Inductive expression of early growth response 1 (Egr-1) in neurons is associated with many forms of neuronal activity. However, only a few Egr-1 target genes are known in the brain. The results of this study demonstrate that Egr-1 knockout (KO) mice display impaired contextual extinction learning and normal fear acquisition relative to wild-type (WT) control animals. Genome-wide microarray experiments revealed 368 differentially expressed genes in the hippocampus of Egr-1 WT exposed to different phases of a fear conditioning paradigm compared to gene expression profiles in the hippocampus of KO mice. Some of genes, such as serotonin receptor 2C (Htr2c), neuropeptide B (Npb), neuronal PAS domain protein 4 (Npas4), NPY receptor Y1 (Npy1r), fatty acid binding protein 7 (Fabp7), and neuropeptide Y (Npy) are known to regulate processing of fearful memories, and promoter analyses demonstrated that several of these genes contained Egr-1 binding sites. This study provides a useful list of potential Egr-1 target genes which may be regulated during fear memory processing.
To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.
본 논문에서는 한국어 음성 데이터를 대상으로 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다. HM-Net은 기존의 SSS(Successive State Splitting) 알고리즘을 개량한 PDT(Phonetic Decision Tree)-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행하며, 마지막으로 파라미터의 공유를 통해 triphone 형태의 최적인 모델 네트워크를 작성하게 된다. 인식에 사용된 알고리즘은 음소 및 단어인식의 경우에는 One-Pass Viterbi 빔 탐색을 사용하며 트리 구조 형태의 사전과 phone/word-pair 문법을 채용하고 있다. 연속음성인식의 경우에는 단어 bigram과 단어 trigram 언어모델과 목구조 형태의 사전을 채용한 Multi-Pass 빔 탐색을 사용하고 있다. 전체적으로 본 논문에서는 다양한 조건에서 HM-Net 음성인식 시스템의 성능평가를 수행하였으며, 지금까지 소개된 음성인식 시스템과 비교하여 매우 우수한 인식성능을 보임을 실험을 통해 확인할 수 있었다.
본 연구에서는 PISA 2015의 과학 영역 결과를 토대로 우리나라 학생의 성취수준 집단 및 성별 집단에 따른 다양한 교육맥락 변인의 특성과 학생들의 성취에 미치는 영향력을 비교 분석하였다. PISA 2015는 과학이 주영역이었기 때문에 과학 영역과 관련된 교수 학습 변인 및 정의적 특성 관련 변인들이 다수 포함되었다. 다집단 구조방정식 모형을 통해서 분석한 결과, 학생들의 수업 환경, 교사의 피드백 등과 같은 교수 학습 특성은 과학 교과의 정의적 특성에 긍정적인 영향을 미치는 것으로 나타났으며, 정의적 특성을 매개로 과학 성취에도 간접적으로 통계적으로 유의하게 정적인 영향을 미치는 것이 확인되었다. 특히 교사의 지지와 맞춤식 수업 등의 교수 방법은 성취수준이 낮은 집단의 정의적 특성향상에 상대적으로 효과가 있었다. 또한 성취수준 집단 간에는 차이가 나타났으나, 성별 집단에서는 차이가 발생하지 않았다. 따라서 학생들의 인지적, 정의적 성취를 향상시키기 위해서 적절한 교수 학습 환경과 전략을 제공하는 것에 대해 지속적으로 강조할 필요가 있을 것이다. 연구 결과를 바탕으로 한 우리나라 교육 개선을 위한 시사점과 학생들의 인지적, 정의적 특성을 향상할 수 있는 방안이 논의되었다.
This paper illustrates the application of co-occurrence theory to generate lightweight ontologies semi-automatically. The proposed model includes three steps of a (Semi-) Automatic creation of Ontology; (they are conceptually named as) the Syntactic-based Ontology, the Semantic-based Ontology and the Ontology Refinement. Each of these three steps are designed to interactively work together, so as to generate Lightweight Ontologies. The Syntactic-based Ontology step includes generating Association words using co-occurrence in web documents. The Semantic-based Ontology step includes the Alignment large Association words with small Ontology, through the process of semantic relations by contextual terms. Finally, the Ontology Refinement step includes the domain expert to refine the lightweight Ontologies. We also conducted a case study to generate lightweight ontologies in specific domains(news domain). In this paper, we found two directions including (1) employment co-occurrence theory to generate Syntactic-based Ontology automatically and (2) Alignment large Association words with small Ontology to generate lightweight ontologies semi-automatically. So far as the design and the generation of big Ontology is concerned, the proposed research will offer useful implications to the researchers and practitioners so as to improve the research level to the commercial use.
최근 오픈 도메인 자연어 질문 응답 분야에서는 다중 작업, 다중 홉 질문 응답에 관한 연구들이 활발히 진행되어 오고 있다. 본 논문에서는 이러한 다중 작업, 다중 홉 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 여러 문단들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 답변 유형, 뒷받침 문장들과 답변 영역 등을 동시에 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 높은 성능과 긍정적 효과를 입증한다.
웹은 양적으로 폭발적인 성장을 이루게 되었지만 맥락적 의미의 결여로 사용자에게 검색에 대한 지적 부담을 높이고 있다. 정보의 양은 많으나 사용자에게 적합한 정보를 얻기 위하여 많은 노력을 기울여 검색 용어를 찾고 검색된 각 웹 문서들을 다시 살펴보아야 한다. 본 연구에서는 시맨틱 웹(Semantic Web)에서 중요하게 다루어지고 있는 온툴로지를 이용하여 특정 도메인 컴퓨터 하드웨어 - 에 관한 맥락적 지식을 표현하고, 이를 이용한 e-Learning 학습 자료 검색 시스템을 설계 및 구현함으로써 검색의 주체인 학습자에게 적합한 교수-학습 자료와 그에 연관된 멀티미디어 자료들을 제공하도록 하였다. 또한 유사어나 철자 오류를 보정하여 검색하는 기능, 온톨로지 상의 클래스, 인스턴스, 프로퍼티를 이용하여 검색하는 등 다양한 부가 기능들을 추가함으로써 학습자 중심의 효율적인 검색시스템을 구현하였다.
Because intra prediction modes in H.264 are determined by the brightness continuity between neighboring blocks, they can be used as a method for extracting edge information in the compression domain. However, if we just consider 9 intra prediction modes in H.264 as 9 different edge directions, we have the following two problems. First, intra prediction modes tend to yield too many edge blocks, generating unnecessary edge information. Second, we may not need all 9 directional edges (including the DC type) in H.264 intra prediction modes. For example, the EHD (edge histogram descriptor) in MPEG-7 defines only 4 directional edge types, namely horizontal, vertical, diagonal (HVD) edges with $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $135^{\circ}$. Here, semi-diagonal (SD) edge types with $112.5^{\circ}$, $157.5^{\circ}$, $22.5^{\circ}$, and $67.5^{\circ}$ in the intra prediction modes in H.264 are not used. In this paper. we prepose a method that removes unnecessary edges from the intra prediction modes by utilizing the total average coefficient of 4x4 blocks in each slice and assign SD edges to HVD (horizontal, vertical, diagonal, $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, $135^{\circ}$) edges by the contextual information of the neighboring blocks. Experimental results show that the edges determined by the proposed method in the compression domain are comparable to those of the previous edge detection methods in the spatial domain.
센서네트워크의 유비쿼터스 환경에서는 지능적이며 상황적응적인 서비스를 제공하기 위한 상황인식 기술이 핵심이다. 상황인식 응용을 지원하기 위해 특정 응용에 종속되지 않고 같은 환경 안에서 응용들이 공유하여 인식할 수 있는 새로운 상황정보 모델이 요구된다. 또한 상황정보모델은 다양한 상황표현과 복잡한 상황인식을 지원하여야 한다. 따라서 이 연구에서 상황인식 과정에 따라 상황정보를 정의하고 도메인 지식과 응용 지식을 온톨로지와 규칙을 이용하여 설계하였다. 공간객체모델을 이용하여 도메인의 공간 온톨로지를 표현하였으며 온톨로지를 확장한 규칙으로 응용 지식을 표현하였다. 풍부한 공간 온톨로지의 표현은 객체의 위치뿐만 아니라 객체사이의 거리와 인접한 객체에 대한 상황정보도 표현하였다. 제안한 상황정보 모델은 확장성과 유연성 및 상호교환을 가능하게 하며 기존의 GIS와 연동하여 다양한 공간상황을 표현하고 복잡한 공간상황을 인식할 수 있는 모델이다. 이 모델을 기반으로 한 시스템구조는 다양한 상황인식 응용뿐 아니라 대규모 실외 상황인식 응용인 대기오염과 재난재해방재 서비스에 적용 가능함을 제시하였다.
오늘날 경제 환경과 기업 활동은 디자인의 가치를 새롭게 인식하고 있으며 디자인교육도 기술적방법과 표현력 중심에서 벗어나고 있다. 이런 디자인의 교육적 환경으로 디자인 매니지먼트의 교육프로그램에도 관심과 기대가 높아가고 있다. 디자인 매니지먼트교육의 새로운 프로그램을 제안하기위해 디자인 매니지먼트의 활동내용을 연도별로 설명하였고, 우리나라 디자인대학과 매니지먼트의 명문교육 기관과의 교육내용을 비교 분석하였다. 외국대학의 매니지먼트 디자인 교육은 경영대학원 중심으로 철저한 실무교육을 바탕으로 하고 있었으며 기본적으로 리더십교육을 강조하고 있었다. 디자인 매니지먼트의 영역은 창의적 요소와 리더십의 요소가 있으며 리더십은 개인의 리더십과 대인의 리더십이 있으며 인간관계성의 스킬이 리더십의 핵심요소가 된다. 이런 디자인의 리더십은 창의력을 조직 내에서 발생시키고 성장시켜나가는 것이므로 디자인 매니지먼트에서는 창의력개발과 리더십을 분리할 수는 없을 것이다. 우리의 창의력 교육은 감성적 기법과 분석적 기법을 통합함은 물론 개인과 그룹의 창의력을 향상시킬 수 있는 다양한 학습 프로그램으로 개발해야 한다. 이런 창의력 향상교육은 우리의 교육과 기업문화에도 활용 될 수 있는 디자인 매니지먼트 교육 프로그램이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.