• Title/Summary/Keyword: Contents Recommendation Method

Search Result 161, Processing Time 0.022 seconds

Personalized Travel Path Recommendation Scheme on Social Media (소셜 미디어 상에서 개인화된 여행 경로 추천 기법)

  • Aniruddha, Paul;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.2
    • /
    • pp.284-295
    • /
    • 2019
  • In the recent times, a personalized travel path recommendation based on both travelogues and community contributed photos and the heterogeneous meta-data (tags, geographical locations, and date taken) which are associated with photos have been studied. The travellers using social media leave their location history, in the form of paths. These paths can be bridged for acquiring information, required, for future recommendation, for the future travellers, who are new to that location, providing all sort of information. In this paper, we propose a personalized travel path recommendation scheme, based on social life log. By taking advantage, of two kinds of social media, such as travelogue and community contributed photos, the proposed scheme, can not only be personalized to user's travel interest, but also be able to recommend, a travel path rather than individual Points of Interest (POIs). The proposed personalized travel route recommendation method consists of two steps, which are: pruning POI pruning step and creating travel path step. In the POI pruning step, candidate paths are created by the POI derived. In the creating travel path step, the proposed scheme creates the paths considering the user's interest, cost, time, season of the topic for more meaningful recommendation.

The Technique of Reference-based Journal Recommendation Using Information of Digital Journal Subscriptions and Usage Logs (전자 저널 구독 정보 및 웹 이용 로그를 활용한 참고문헌 기반 저널 추천 기법)

  • Lee, Hae-sung;Kim, Soon-young;Kim, Jay-hoon;Kim, Jeong-hwan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.75-87
    • /
    • 2016
  • With the exploration of digital academic information, it is certainly required to develop more effective academic contents recommender system in order to accommodate increasing needs for accessing more personalized academic contents. Considering historical usage data, the academic content recommender system recommends personalized academic contents which corresponds with each user's preference. So, the academic content recommender system effectively increases not only the accessibility but also usability of digital academic contents. In this paper, we propose the new journal recommendation technique based on information of journal subscription and web usage logs in order to properly recommend more personalized academic contents. Our proposed recommendation method predicts user's preference with the institution similarity, the journal similarity and journal importance based on citation relationship data of references and finally compose institute-oriented recommendations. Also, we develop a recommender system prototype. Our developed recommender system efficiently collects usage logs from distributed web sites and processes collected data which are proper to be used in proposed recommender technique. We conduct compare performance analysis between existing recommender techniques. Through the performance analysis, we know that our proposed technique is superior to existing recommender methods.

Personal Recommendation Service Design Through Big Data Analysis on Science Technology Information Service Platform (과학기술정보 서비스 플랫폼에서의 빅데이터 분석을 통한 개인화 추천서비스 설계)

  • Kim, Dou-Gyun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.4
    • /
    • pp.501-518
    • /
    • 2017
  • Reducing the time it takes for researchers to acquire knowledge and introduce them into research activities can be regarded as an indispensable factor in improving the productivity of research. The purpose of this research is to cluster the information usage patterns of KOSEN users and to suggest optimization method of personalized recommendation service algorithm for grouped users. Based on user research activities and usage information, after identifying appropriate services and contents, we applied a Spark based big data analysis technology to derive a personal recommendation algorithm. Individual recommendation algorithms can save time to search for user information and can help to find appropriate information.

Tag Based Web Resource Recommendation System (태그의 문맥 정보를 이용한 웹 자원 추천 시스템)

  • Song, Je-In;Jeong, Ok-Ran
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.133-141
    • /
    • 2016
  • Recent web services provide tagging function to users, and let them express the topic of the contents of their articles. Moreover, we can extract context information like emotion of the writer efficiently by using tags attached to the articles or images. And we are able to better understand article than traditional algorithm. (eg. TF-IDF) Therefore, if we use tags in recommendation system, we can recommend high quality resources to the users. This study proposes a recommendation method that provide web resources (articles, users) through simple algorithm based on related tag set extracted from the article. Through the experiments, we show that the result was satisfactory, and we measure the satisfaction of users.

Cross-Domain Recommendation based on K-Means Clustering and Transformer (K-means 클러스터링과 트랜스포머 기반의 교차 도메인 추천)

  • Tae-Hoon Kim;Young-Gon Kim;Jeong-Min Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2023
  • Cross-domain recommendation is a method that shares related user information data and item data in different domains. It is mainly used in online shopping malls with many users or multimedia service contents, such as YouTube or Netflix. Through K-means clustering, embeddings are created by performing clustering based on user data and ratings. After learning the result through a transformer network, user satisfaction is predicted. Then, items suitable for the user are recommended using a transformer-based recommendation model. Through this study, it was shown through experiments that recommendations can predict cold-start problems at a lesser time cost and increase user satisfaction.

A Method for Recommending Learning Contents Using Similarity and Difficulty (유사도와 난이도를 이용한 학습 콘텐츠 추천 방법)

  • Park, Jae -Wook;Lee, Yong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.127-135
    • /
    • 2011
  • It is required that an e-learning system has a content recommendation component which helps a learner choose an item. In order to predict items concerning learner's interest, collaborative filtering and content-based filtering methods have been most widely used. The methods recommend items for a learner based on other learner's interests without considering the knowledge level of the learner. So, the effectiveness of the recommendation can be reduced when the number of overall users are relatively small. Also, it is not easy to recommend a newly added item. In order to address the problem, we propose a content recommendation method based on the similarity and the difficulty of an item. By using a recommendation function that reflects both characteristics of items, a higher-level leaner can choose more difficult but less similar items, while a lower-level learner can select less difficult but more similar items, Thus, a learner can be presented items according to his or her level of achievement, which is irrelevant to other learner's interest.

Using collaborative filtering techniques Mobile ad recommendation system (협업필터링 기법을 이용한 모바일 광고 추천 시스템)

  • Kim, Eun-suk;Yoon, Sung-dae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.3-6
    • /
    • 2012
  • Due to recent rapid growth of mobile market, the modern people increasing make use of mobile contents as a means to obtain the desired information quickly by overcoming various restraints of a computer. The wide range of recommended contents, however, takes much time in selection of contents. To resolve such issues, a system that predicts the contents desired by the user and makes an accurate recommendation is necessary. In this paper, in order to provide the desired contents in line with the user demands, a method to increase select the number of recommendation using cooperative filtering is proposed. In the first step, the categories are formulated with super-classes and the similarity between the target customer and users is found, and the nearest-neighbors are constituted to find the preference predictions between super-classes, and the super-class with the highest resulting value is recommended to the target customer. In the second step, the preference predictions between sub-classes are found and the sub-class with the highest value is recommended to the target customer. In the experiment, mobile contents are recommended through super-class-based cooperative filtering, and then the mobile contents are recommended through sub-class-based cooperative filtering, and sub-class collaborative filtering method to select a high number of verification.

  • PDF

Personalized Item Recommendation using Image-based Filtering (이미지 기반 필터링을 이용한 개인화 아이템 추천)

  • Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • Due to the development of ubiquitous computing, a wide variety of information is being produced and distributed rapidly in digital form. In this excess of information, it is not easy for users to search and find their desired information in short time. In this paper, we propose the personalized item recommendation using the image based filtering. This research uses the image based filtering which is extracting the feature from the image data that a user is interested in, in order to improve the superficial problem of content analysis. We evaluate the performance of the proposed method and it is compared with the performance of previous studies of the content based filtering and the collaborative filtering in the MovieLens dataset. And the results have shown that the proposed method significantly outperforms the previous methods.

Discovery of Preference through Learning Profile for Content-based Filtering (내용 기반 필터링을 위한 프로파일 학습에 의한 선호도 발견)

  • Chung, Kyung-Yong;Jo, Sun-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • The information system in which users can utilize to control and to get the filtered information efficiently has appeared. Content-based filtering can reflect content information, and it provides recommendation by comparing the feature information about item and the profile of preference. This has the shortcoming of the varying accuracy of prediction depending on teaming method. This paper suggests the discovery of preference through learning the profile for the content-based filtering. This study improves the accuracy of recommendation through learning the profile according to granting the preference of 6 levels to estimated value in order to solve the problem. Finally, to evaluate the performance of the proposed method, this study applies to MovieLens dataset, and it is compared with the performance of previous studies.

A Customer Profile Model for Collaborative Recommendation in e-Commerce (전자상거래에서의 협업 추천을 위한 고객 프로필 모델)

  • Lee, Seok-Kee;Jo, Hyeon;Chun, Sung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.67-74
    • /
    • 2011
  • Collaborative recommendation is one of the most widely used methods of automated product recommendation in e-Commerce. For analyzing the customer's preference, traditional explicit ratings are less desirable than implicit ratings because it may impose an additional burden to the customers of e-commerce companies which deals with a number of products. Cardinal scales generally used for representing the preference intensity also ineffective owing to its increasing estimation errors. In this paper, we propose a new way of constructing the ordinal scale-based customer profile for collaborative recommendation. A Web usage mining technique and lexicographic consensus are employed. An experiment shows that the proposed method performs better than existing CF methodologies.