• 제목/요약/키워드: Contents Recommendation Method

검색결과 161건 처리시간 0.027초

콘텐츠들 간의 유의어 태그매핑을 이용한 확장된 추천기법의 연구 (A Study of Extended Recommendation Method Using Synonym Tags Mapping Between Two Types of Contents)

  • 김지연;김영창;정종진
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.82-88
    • /
    • 2017
  • Recently recommendation methods need personalization and diversity as well as accuracy whereas the traditional researches have been mainly focused on the accuracy of recommendation in terms of quality. The diversity of recommendation is also important to people in terms of quantity in addition to quality since people's desire for content consumption have been stronger rapidly than past. In this paper, we pay attention to similarity of data gathered simultaneously among different types of contents. With this motivation, we propose an enhanced recommendation method using correlation analysis with considering data similarity between two types of contents which are movie and music. Specifically, we regard folksonomy tags for music as correlated data of genres for movie even though they are different attributes depend on their contents. That is, we make result of new recommendation movie items through mapping music folksonomy tags to movie genres in addition to the recommendation items from the typical collaborative filtering. We evaluate effectiveness of our method by experiments with real data set. As the result of experimentation, we found that the diversity of recommendation could be extended by considering data similarity between music contents and movie contents.

소셜네트워크 기반의 콘텐츠 추천 방법 (Contents Recommendation Method Based on Social Network)

  • ;손종수;정인정
    • 정보처리학회논문지B
    • /
    • 제18B권5호
    • /
    • pp.279-290
    • /
    • 2011
  • 최근 웹 및 웹 콘텐츠의 양이 폭발적으로 증가함에 따라서 콘텐츠 추천 시스템(CRS, Contents Recommendation System)은 최근 중요한 이슈로 대두되었다. 이에 따라, 콘텐츠 추천 시스템에 대한 콘텐츠 추천 방법(CRM, Contents Recommendation Method)이 꾸준히 연구 및 소개되어 왔다. 그러나 전통적인 CRM들은 콘텐츠 생성자의 위상이 중요하게 여겨지는 웹 2.0 환경에서 활용하는데 부족함이 있다. 본 논문에서는 연결 정도 중심성 분석(Degree of centrality) 및 TF-IDF를 활용하여 양질의 콘텐츠를 추천하는 방법을 제안한다. 이를 위하여 본 논문에서는 RSS와 FOAF를 수집하여 TF-IDF와 연결 정도 중심성을 각각 분석한다. 그리고 분석된 두 값을 이용하여 콘텐츠를 추천한다. 본 논문에서 제안한 방법을 검증하기 위하여 우리는 시스템을 구현하였으며 콘텐츠 추천 결과를 보인다. 본 논문에서 제안한 방법을 사용하면 입력된 질의어에 대해 사용자와 콘텐츠의 관계를 분석하고 이를 통해 적절한 콘텐츠를 추출할 수 있다. 그리고 본 논문에서 제안한 방법을 통해 구축한 시스템은 전통적인 콘텐츠 추천 시스템과 달리 소셜네트워크에서 콘텐츠 생산자에 대한 중요도가 반영됨으로 보다 신뢰성이 있는 결과를 얻을 수있다.

유비쿼터스 환경에서 다중 상황 적응적인 효과적인 권유 기법 (Effective Recommendation Method Adaptive to Multiple Contexts in Ubiquitous Environments)

  • 권준희
    • 한국콘텐츠학회논문지
    • /
    • 제6권5호
    • /
    • pp.1-8
    • /
    • 2006
  • 유비쿼터스 환경 하에서 다중 상황 기반 권유 서비스에 대한 요구가 증대하고 있다. 이러한 환경에서는 상황의 수가 증가함에 따라 권유 정보의 양이 크게 증가하게 되어 효과적인 정보 제공이 어려워진다는 문제를 가진다. 이를 위해 본 논문에서는 유비쿼터스 환경에서 다중 상황 적응적인 효과적인 권유 기법을 제안한다. 본 제안 기법에서는 상황별로 의미 있는 정보를 제공할 수 있도록 하기 위해 사용자들의 상황별 선호도와 행위를 권유 정보의 양을 결정하는 가중치 요소로서 사용한다. 이를 위해 권유 기법과 시나리오를 제시하고, 본 논문에서 제안하는 기법의 효과성을 실험을 통해 평가한다.

  • PDF

유비쿼터스 환경에서 상황 데이터 기반 모바일 콘텐츠 서비스를 위한 추천 기법 (Recommendation Method for Mobile Contents Service based on Context Data in Ubiquitous Environment)

  • 권준희;김성림
    • 디지털산업정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.1-9
    • /
    • 2010
  • The increasing popularity of mobile devices, such as cellular phones, smart phones, and PDAs, has fostered the need to recommend more effective information in ubiquitous environments. We propose the recommendation method for mobile contents service using contexts and prefetching in ubiquitous environment. The proposed method enables to find some relevant information to specific user's contexts and computing system contexts. The prefetching has been applied to recommend to user more effectively. Our proposed method makes more effective information recommendation. The proposed method is conceptually comprised of three main tasks. The first task is to build a prefetching zone based on user's current contexts. The second task is to extract candidate information for each user's contexts. The final task is prefetch the information considering mobile device's resource. We describe a new recommendation.

스마트 환경에서의 사용자 상황인지 기반 지식 필터링을 이용한 콘텐츠 추천 시스템 (Content Recommendation System Using User Context-aware based Knowledge Filtering in Smart Environments)

  • 이동우;김웅수;염근혁
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권2호
    • /
    • pp.35-48
    • /
    • 2017
  • 스마트 환경에서는 센서, 디스플레이, 스마트폰 등 각종 장치들이 존재하며, 이러한 장치들을 이용하여 다양한 콘텐츠가 제공될 수 있다. 그러나 방대한 양의 콘텐츠가 다수의 사용자들에게 제공되고 있지만, 대부분의 환경에서 사용자에 대한 고려가 없거나 위치, 시간 등의 간단한 요소만을 고려하고 있어 사용자를 위한 유의미한 콘텐츠 제공에 한계가 있다. 이에 본 논문에서는 사용자에게 맞춤형 콘텐츠를 제공하기 위해 사용자, 장치, 콘텐츠가 가진 상황 정보를 인지하여 콘텐츠를 추천할 수 있는 시스템인 상황인지 기반 콘텐츠 추천 시스템을 제시한다. 상황인지 기반 콘텐츠 추천 시스템은 스마트 환경의 컨텍스트를 추론하고 사용자와 콘텐츠의 정보를 이용하여 사용자의 콘텐츠별 선호도를 산출하고 사용자에게 콘텐츠를 추천한다. 이러한 시스템의 프로세스를 구축하기 위해 도메인 지식을 온톨로지 모델로 구축하고, 콘텐츠 추천 시스템을 설계 및 구현하기 위한 방법을 제시한다. 그리고 부산의 센텀시티를 도메인으로 하여 사례 연구를 진행하며 산출된 0.8730의 평균 절대값 오차를 이용하여 제시한 시스템의 콘텐츠 추천 성능의 우수성을 검증하였다.

이용자 이용행위 및 콘텐츠 위치정보에 기반한 개인화 추천방법에 관한 연구 (A Study on Personalized Recommendation Method Based on Contents Using Activity and Location Information)

  • 김용;김문석;김윤범;박재홍
    • 정보관리학회지
    • /
    • 제26권1호
    • /
    • pp.81-105
    • /
    • 2009
  • 본 연구에서는 웹, IPTV 등의 콘텐츠 유통망에서의 개인화 추천서비스를 위하여 이용자의 콘텐츠 이용행위와 콘텐츠의 위치정보를 활용한 추천방법을 제안하고 있다. 추천방법의 성능향상을 위하여 이용자 및 콘텐츠 프로파일 생성방법과 함께, 이용자의 콘텐츠 이용행위를 암묵적 이용자 피드백으로서 학습과정에 적용하여 이용자 선호도를 분석하였다. 학습과정에서의 이용자 선호도 분석을 위하여 협업여과추천방법 및 내용기반추천 방법을 적용하였다. 또한 보다 정확한 추천을 위한 최종 콘텐츠 추천을 위하여 웹사이트 상의 콘텐츠에 대한 위치정보를 활용한 추천방법을 제안하고 있다. 이를 통하여 보다 효율적이고 정확한 추천 서비스의 제공이 가능할 수 있다.

추천 다양화 방법을 적용한 콜드 아이템 추천 정확도 향상 (Improved Cold Item Recommendation Accuracy by Applying an Recommendation Diversification Method)

  • 한정규;천세진
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1242-1250
    • /
    • 2022
  • When recommending cold items that do not have user-item interactions to users, even we adopt state-of-the-arts algorithms, the predicted information of cold items tends to have lower accuracy compared to warm items which have enough user-item interactions. The lack of information makes for recommender systems to recommend monotonic items which have a few top popular contents matched to user preferences. As a result, under-diversified items have a negative impact on not only recommendation diversity but also on recommendation accuracy when recommending cold items. To address the problem, we adopt a diversification algorithm which tries to make distributions of accumulated contents embedding of the two items groups, recommended items and the items in the target user's already interacted items, similar. Evaluation on a real world data set CiteULike shows that the proposed method improves not only the diversity but also the accuracy of cold item recommendation.

소셜네트워크에서 분위기 벡터를 이용한 멀티미디어 콘텐츠 추천 방법 (Multimedia Contents Recommendation Method using Mood Vector in Social Networks)

  • 문창배;이종열;김병만
    • 한국산업정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.11-24
    • /
    • 2019
  • 웹에서 정보 구매자들의 성향은 가성비에서 가심비 형태로 변해가는 추세이다. 멀티미디어 콘텐츠 추천에도 그러한 흐름이 있는데, 바로 폭소노미 (Folksonomy) 기반의 분위기를 이용한 추천 방법이다. 하지만 이런 방법의 경우 동의어를 고려하지 못한다는 문제점이 존재한다. 이 문제를 해결하기 위해 일부 연구에서는 Thayer모델의 12 분위기를 AV(Arousal and Valence)값으로 정의하여 그 문제점을 해결하였지만, 추천 성능이 재현 수준 0.1에서 키워드 기반 검색 방법보다 떨어지는 문제점을 보였다. 본 논문에서는 재현 수준 0.1에서도 키워드 기반 검색 방법과 동일한 추천 성능을 유지하면서 동의어 문제를 해결할 수 있도록 멀티미디어 콘텐츠의 분위기 벡터를 이용하는 방법을 제안하였다. 또한, 추천 성능 분석을 위해 기존 AV값 기반 방법과 키워드 기반 방법과 비교 분석하였다. 추천 성능 분석결과, 본 논문에서 제안한 방법이 전체적으로 기존 방법들 보다 우수한 추천 성능을 보였다.

시청 시간대 정보를 활용한 LSTM 기반 IPTV 콘텐츠 추천 (LSTM-based IPTV Content Recommendation using Watching Time Information)

  • 표신지;정진환;송인준
    • 방송공학회논문지
    • /
    • 제24권6호
    • /
    • pp.1013-1023
    • /
    • 2019
  • 수많은 채널과 VoD 콘텐츠, 웹 콘텐츠들이 존재하는 콘텐츠 소비 환경에서의 추천은 이제 선택이 아닌 필수가 되었다. 현재 OTT서비스나 IPTV서비스에서도 많은 사람들이 선호하는 콘텐츠를 추천하거나 사용자가 시청한 콘텐츠와 유사한 콘텐츠들을 추천하는 등, 다양한 종류의 추천 서비스들이 제공되고 있다. 하지만 TV, IPTV와 같이 대체로 한 가구당 하나의 가입정보와 하나의 TV, 셋탑박스를 공유하는 TV를 통한 콘텐츠 시청환경의 경우, 하나의 가입정보에 1명 이상의 사용 이력이 쌓여 특정 사용자에 대한 추천을 제공하기에 어려움이 존재한다. 본 논문에서는 이러한 문제를 해결하기 위해 가족의 개념을 {사용자, 시간}으로 해석하여, 기존의 {사용자, 콘텐츠}로 정의하는 추천 관계를 {사용자, 시간, 콘텐츠}으로 확장하고 이를 딥러닝 기반으로 해결하는 방법을 제안한다. 제안한 방법을 통해 추천 성능을 정성적 정량적으로 평가하였으며, 기존의 시간대를 고려하지 않은 방법과 비교하여 추천 정확도가 향상됨을 확인할 수 있었다.

상황인식 모바일 커머스를 위한 단계별 권유 기법 (Leveled Recommendation for Context-Aware Mobile Commerce)

  • 김성림;권준희
    • 한국콘텐츠학회논문지
    • /
    • 제5권4호
    • /
    • pp.36-44
    • /
    • 2005
  • 모바일 커머스 어플리케이션에서 각 소비자들이 구입할 상품을 상황에 맞게 효과적으로 찾을 수 있도록 도와주는 권유 서비스는 그 필요성이 점차 부각되고 있다. 본 논문에서는 상황인식 모바일 커머스를 위한 새로운 단계별 권유 기법을 제안한다. 제안한 기법에서는 상황에 따라 한번에 모든 정보를 권유하지 않고 단계별로 권유하는 접근 방법을 취하며, 소비자의 패턴과 프리패칭 기법을 사용함으로써 효율적인 권유 서비스가 가능하다. 이를 위해 제안된 기법을 설명하고 이를 모바일 커머스 어플리케이션 시나리오에 적용해본다. 또한, 실험을 통해 기존 기법보다 제안된 기법이 우수함을 보인다.

  • PDF