본 논문에서는 시각적. 공간적 정보로 구성된 이미지의 효율적인 검색을 위하여, 색상특징정보와 모양특징정보를 멀티인덱스키로 구성하고 질의 이미지의 입력 시 자동으로 색상특징정보와 모양특징정보를 동시에 추출하여 유사한 이미지를 검색할 수 있는 내용기반 이미지 검색시스템을 제안하였다. 제안된 시스템은 기존의 단일 특징정보를 이용한 방법이나 2가지 이상의 특징정보를 단계적으로 검색하는 방법에 비해 향상된 효율성과 신속성을 보이고 있다.
This paper contains links and facts to a number of projects on "content-based access to image databases" around the world today. The main focus is on what kind of image features are used but also the user interface and the users possibility to interact with the system.
본 논문에서는 칼라 영상 검색을 위한 특징으로서 칼라 정보와 모양 정보를 고려하는 복합적인 특징벡터를 사용한 영상 검색 기법을 제안하였다. 비균둥 양자화 방법인 Lloyd-Max quantizer를 통한 효율적인 칼라 양자화를 하였고, 양자화를 거친 후 생성된 칼라 그룹간의 공간적 분포상황을 고려하기 위해 히스토그램 행렬을 도입함으로써 칼라 정보를 기반으로한 검색 효율을 증대시켰다. 또한 모양 정보를 획득하기 위해 향상된 불변 모멘트를 사용함으로써 연산량을 줄이면서, 검색 효율을 증대시켰다. 영상으로 200여개의 칼라 트레이드마크를 사용하여 기존의 방법들과의 비교실험을 통해 원영상 뿐만 아니라 변형된 영상에 대해서 보다 향상된 검색 결과를 얻을 수 있었다. 즉, 영상내의 물체의 회전, 이동, 잡음 첨가와 감마 보정값 등에 의해 변형된 영상에 대해서 보다 더 강한 결과를 얻을 수 있었다.
본 논문에서는 해마와 피질 사이의 상호 작용을 이용하여 사용자 친화적인 객체 기반 영상 검색 시스템을 제안한다. 내용기반 영상 검색 시스템은 대부분 예제(example) 질의 혹은 스케치 질의 등을 이용하고 있고 이러한 방법들은 비교적 사용하기 불편하고 방법이 편중되어 있어서 일반 사용자들의 다양한 질의 요구에 적합하지 못하다. 제안하는 알고리즘은 CSB 트리맵 (Color and Spatial based Binary tree map)을 이용하여 객체를 추출하고 지역 라벨링 알고리즘을 이용하여 객체의 색상의 상관관계, 객체의 크기와 위치 정보를 비트 스트림 형태로 변환하고 이것을 해마와 피질 사이의 상호 작용의 관계를 이용한 해마 신경망을 사용하여 학습시킨다. 사람의 뇌 속에서 어떤 패턴을 인식을 하는 경우 해당 패턴의 특이한 특징에 대해 흥분하는 세포들이 특정 신호를 발생시킨다. 이것은 흥분학습에 의해 단기기억에서 장기기억으로 저장하는 해마의 기능으로 기존의 신경망에서는 입력되는 패턴의 특성과는 상관없이 특징 개수가 모두 동일하게 비교된다. 제안하는 해마 신경망은 호감도 조정에 의해서 입력되는 영상 패턴의 특징들을 흥분학습과 억제학습을 이용하여 불필요한 특징은 억제시키고 중요한 특징은 장기 기억 시켜서 적응성 있는 고속 검색 시스템을 구현한다.
Recently, development of digital technology is occupying a large part of multimedia information like character, voice, image, video, etc. Research about video indexing and retrieval progresses especially in research relative to video. This paper proposes the novel notation in order to retrieve MPEG video in the international standards of moving picture encoding For realizing the retrieval-system, we detect DCT DC coefficient, and then we obtain shot to apply MVC(Mean Value Comparative) notation to image constructed DC coefficient. We choose the key frame for start-frame of a shot, and we have the codebook index generating it using feature of DC image and applying PCA(principal Component Analysis) to the key frame. Also, we realize the retrieval-system through similarity after indexing. We could reduce error detection due to distinguish shot from conventional shot detection algorithm. In the mean time, speed of indexing is faster by PCA due to perform it in the compressed domain, and it has an advantage which is to generate codebook due to use statistical features. Finally, we could realize efficient retrieval-system using MVC and PCA to shot detection and indexing which is important step of retrieval-system, and we using retrieval-system over the internet.
With the expansion of Internet, a variety of image databases are widely used and it is needed to select the part of an image what he wants. In contents-based image retrieval system, Zernikie moment and ART Descriptors are used fur shape descriptors in MPEC-7. This paper presents a fast computation method to determine the radius of a bounding circle that encloses an object in a binary image. With conventional methods, the whole area of the image should be scanned first and the distance from every pixel to the center point be computed. The proposed 4-directional scan method and fast circle-drawing algorithm is utilized to minimize the scanning area and reduce the number of operations fur computing the distance. Experimental results show that proposed method saves the computation time to determine the radius of a bounding circle efficiently.
본 논문에서는 영상검색 방법의 하나인 내용에 기반을 둔 검색방법으로 순차영역분할과 투영정보를 이용 한 영상검색 방법을 제안한다. 제안한 방법은 순차 분할된 영역의 색상평균값과 각 영역의 투영정보를 이용한 방법으로 영상의 공간정보와 컬러정보를 효과적으로 결합한 방법이다. 실험결과 제안한 방법이 기존의 방법 보다 검색효율이 $11.6\%$ 증가됨을 알 수 있었다. 또한 영상의 밝기변화, 회전, 카메라의 위치 및 확대, 축소에 따른 영상의 공간변화에도 매우 강인한 것으로 나타났다.
Support vector machine (SVM) active learning plays a key role in the interactive content-based image retrieval (CBIR) community. However, the regular SVM active learning is challenged by what we call "the small example problem" and "the asymmetric distribution problem." This paper attempts to integrate the merits of semi-supervised learning, ensemble learning, and active learning into the interactive CBIR. Concretely, unlabeled images are exploited to facilitate boosting by helping augment the diversity among base SVM classifiers, and then the learned ensemble model is used to identify the most informative images for active learning. In particular, a bias-weighting mechanism is developed to guide the ensemble model to pay more attention on positive images than negative images. Experiments on 5000 Corel images show that the proposed method yields better retrieval performance by an amount of 0.16 in mean average precision compared to regular SVM active learning, which is more effective than some existing improved variants of SVM active learning.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권3호
/
pp.993-1014
/
2021
This paper proposes a new image retrieval method called the 3D integrated multi-index to fuse SIFT (Scale Invariant Feature Transform) visual words with other features at the indexing level. The advantage of the 3D integrated multi-index is that it can produce finer subdivisions in the search space. Compared with the inverted indices of medium-sized codebook, the proposed method increases time slightly in preprocessing and querying. Particularly, the SIFT, contour and colour features are fused into the integrated multi-index, and the joint cooperation of complementary features significantly reduces the impact of false positive matches, so that effective image retrieval can be achieved. Extensive experiments on five benchmark datasets show that the 3D integrated multi-index significantly improves the retrieval accuracy. While compared with other methods, it requires an acceptable memory usage and query time. Importantly, we show that the 3D integrated multi-index is well complementary to many prior techniques, which make our method compared favorably with the state-of-the-arts.
본 논문에서는 효과적인 영상검색을 위한 특징으로 칼라 크로스-코렐로그램(color cross-correlogram)을 제안한다. 칼라 크로스-코렐로그램은 영상에서 일정 거리에 있는 두 화소에서 다른 칼라가 나타날 확률을 나타낸 것으로, 영상에 존재하는 하나의 칼라를 가지는 영역의 크기 정보를 포함하지 않는다 그래서 영상에 존재하는 영역의 크기 변화에 대해 강인하게 영상을 검색할 수 있다. 실험을 통해 제안한 방법은 영상의 물체 크기 변화에 강인하게 영상을 검색할 수 있음을 확인하였고, 칼라 코렐로그램을 이용한 검색보다 우수한 성능을 나타냄을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.