• Title/Summary/Keyword: Content-based image retrieval

Search Result 448, Processing Time 0.029 seconds

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

Object-based Image Retrieval Using Dominant Color Pair and Color Correlogram (Dominant 컬러쌍 정보와 Color Correlogram을 이용한 객체기반 영상검색)

  • 박기태;문영식
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • This paper proposes an object-based image retrieval technique based on the dominant color pair information. Most of existing methods for content based retrieval extract the features from an image as a whole, instead of an object of interest. As a result, the retrieval performance tends to degrade due to the background colors. This paper proposes an object based retrieval scheme, in which an object of interest is used as a query and the similarity is measured on candidate regions of DB images where the object may exist. From the segmented image, the dominant color pair information between adjacent regions is used for selecting candidate regions. The similarity between the query image and DB image is measured by using the color correlogram technique. The dominant color pair information is robust against translation, rotation, and scaling. Experimental results show that the performance of the proposed method has been improved by reducing the errors caused by background colors.

Implementation on the Filters Using Color and Intensity for the Content based Image Retrieval (내용기반 영상검색을 위한 색상과 휘도 정보를 이용한 필터 구현)

  • Noh, Jin-Soo;Baek, Chang-Hui;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.122-129
    • /
    • 2007
  • As the availability of an image information has been significantly increasing, necessity of system that can manage an image information is increasing. Accordingly, we proposed the content-based image retrieval(CBIR) method based on an efficient combination of a color feature and an image's shape and position information. As a color feature, a HSI color histogram is chosen which is known to measure spatial of colors well. Shape and position information are obtained using Hu invariant moments in the luminance of HSI model. For efficient similarity computation, the extracted features(Color histogram, Hu invariant moments) are combined and then measured precision. As a experiment result using DB that was supported by http://www.freefoto.com, the proposed image search engine has 93% precision and can apply successfully image retrieval applications.

Complex Color Model for Efficient Representation of Color-Shape in Content-based Image Retrieval (내용 기반 이미지 검색에서 효율적인 색상-모양 표현을 위한 복소 색상 모델)

  • Choi, Min-Seok
    • Journal of Digital Convergence
    • /
    • v.15 no.4
    • /
    • pp.267-273
    • /
    • 2017
  • With the development of various devices and communication technologies, the production and distribution of various multimedia contents are increasing exponentially. In order to retrieve multimedia data such as images and videos, an approach different from conventional text-based retrieval is needed. Color and shape are key features used in content-based image retrieval, which quantifies and analyzes various physical features of images and compares them to search for similar images. Color and shape have been used as independent features, but the two features are closely related in terms of cognition. In this paper, a method of describing the spatial distribution of color using a complex color model that projects three-dimensional color information onto two-dimensional complex form is proposed. Experimental results show that the proposed method can efficiently represent the shape of spatial distribution of colors by frequency transforming the complex image and reconstructing it with only a few coefficients in the low frequency.

Query by Colour : Investigating the Efficacy of Query Paradigms for Visual Information Retrieval (색에 의한 질의: 시각정보 검색을 위한 질의 패러다임의 유용성 측정)

  • Venters, Colin C.
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.2
    • /
    • pp.135-158
    • /
    • 2011
  • The ability of the searcher to express their information problem to an information retrieval system is fundamental to the retrieval process. Query by visual example is the principal query paradigm for expressing queries in a content-based image retrieval environment yet there is little empirical evidence to support its efficacy in facilitating query formulation. The aim of this research was to investigate the usability of the query by colour method in supporting a range of information problems in order to contribute to the gap in knowledge regarding the relationship between searchers' information problems and the query methods required to support efficient and effective visual query formulation. The results strongly suggest that the query method does not support visual query formulation and that there is a significant mismatch between the searchers information problems and the expressive power of the retrieval paradigm.

Content-based Image Retrieval using Color and Block Region Features (컬러와 블록영역 특징을 이용한 내용기반 화상 검색)

  • 최기호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6C
    • /
    • pp.610-618
    • /
    • 2002
  • This paper presents a new image retrieval method that is based on color space and block region information. The color space information of images can be obtained by color binary set, and the block region information can be obtained by regional segmentation and feature. The candidate images are decided by comparing with color features and its binary set of query image and image feature database for retrieval. Particularly, it is possible that the retrieval using similarity-measurements has the weights of color spatial distribution arid its objective block region features. This retrieval method using color spatial and block region features is shown with the effectiveness on the result of implementation on image database with 6,000 images.

Content-based image retrieval using color (Hue를 이용한 내용기반 검색)

  • Kim Dong-Woo;Chang Un-Dong;Kim Young-Gil;Song Young-Jun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.480-483
    • /
    • 2005
  • This study has proposed a method of content-based image retrieval in order to overcome disadvantages of color histogram. The existing histogram method has a weak point that reduces accuracy because of quantization error, and more. In order to solve this, we convert color information to HSV and quantize Hue factor being net color information and calculate histogram and then use this for retrieval feature that is robust in brightness, movement, and rotation. As a result of experimenting, the method proposed has showed better precision than the existing method.

  • PDF

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

A Similarity Ranking Algorithm for Image Databases (이미지 데이터베이스 유사도 순위 매김 알고리즘)

  • Cha, Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.366-373
    • /
    • 2009
  • In this paper, we propose a similarity search algorithm for image databases. One of the central problems regarding content-based image retrieval (CBIR) is the semantic gap between the low-level features computed automatically from images and the human interpretation of image content. Many search algorithms used in CBIR have used the Minkowski metric (or $L_p$-norm) to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information. Our new search algorithm tackles this problem by employing new similarity measures and ranking strategies that reflect the nonlinearity of human perception and contextual information. Our search algorithm yields superior experimental results on a real handwritten digit image database and demonstrates its effectiveness.

Implementation of G2T Descriptor of the based in Texture (텍스쳐 기반의 G2T 검색자 개발)

  • Lee, Yong-Whan;Cho, Jae-Hoon;Rhee, Sang-Bum;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.49-52
    • /
    • 2007
  • The recent advances in digital imaging and computing technology have resulted in a rapid accumulation of digital media in the personal computing and entertainment industry. In addition, large collections of such data already exist in many scientific application domains such as the geographic information systems (GIS), digital library, trademark imaging, satellite imaging and medical imaging. Thus, the need for content-based retrieval from visual media, such as image and video data, is ever increasing rapidly in many applications.

  • PDF