• Title/Summary/Keyword: Content-based copy detection

Search Result 20, Processing Time 0.025 seconds

A Novel Video Copy Detection Method based on Statistical Analysis (통계적 분석 기반 불법 복제 비디오 영상 감식 방법)

  • Cho, Hye-Jeong;Kim, Ji-Eun;Sohn, Chae-Bong;Chung, Kwang-Sue;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.661-675
    • /
    • 2009
  • The carelessly and illegally copied contents are raising serious social problem as internet and multimedia technologies are advancing. Therefore, development of video copy detection system must be settled without delay. In this paper, we propose the hierarchical video copy detection method that estimates similarity using statistical characteristics between original video and manipulated(transformed) copy video. We rank according to luminance value of video to be robust to spacial transformation, and choose similar videos categorized as candidate segments in huge amount of database to reduce processing time and complexity. The copy videos generally insert black area in the edge of the image, so we remove rig black area and decide copy or not by using statistical characteristics of original video and copied video with center part of frame that contains important information of video. Experiment results show that the proposed method has similar keyframe accuracy to reference method, but we use less memory to save feature information than reference's, because the number of keyframes is less 61% than that of reference's. Also, the proposed method detects if the video is copied or not efficiently despite expansive spatial transformations such as blurring, contrast change, zoom in, zoom out, aspect ratio change, and caption insertion.

Extended Temporal Ordinal Measurement Using Spatially Normalized Mean for Video Copy Detection

  • Lee, Heung-Kyu;Kim, June
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.490-492
    • /
    • 2010
  • This letter proposes a robust feature extraction method using a spatially normalized mean for temporal ordinal measurement. Before computing a rank matrix from the mean values of non-overlapped blocks, each block mean is normalized so that it obeys the invariance property against linear additive and subtractive noise effects and is insensitive against multiplied and divided noise effects. Then, the temporal ordinal measures of spatially normalized mean values are computed for the feature matching. The performance of the proposed method showed about 95% accuracy in both precision and recall rates on various distortion environments, which represents the 2.7% higher performance on average compared to the temporal ordinal measurement.

Research on the Detection of Image Tampering

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.111-121
    • /
    • 2021
  • As the main carrier of information, digital image is becoming more and more important. However, with the popularity of image acquisition equipment and the rapid development of image editing software, in recent years, digital image counterfeiting incidents have emerged one after another, which not only reduces the credibility of images, but also brings great negative impacts to society and individuals. Image copy-paste tampering is one of the most common types of image tampering, which is easy to operate and effective, and is often used to change the semantic information of digital images. In this paper, a method to protect the authenticity and integrity of image content by studying the tamper detection method of image copy and paste was proposed. In view of the excellent learning and analysis ability of deep learning, two tamper detection methods based on deep learning were proposed, which use the traces left by image processing operations to distinguish the tampered area from the original area in the image. A series of experimental results verified the rationality of the theoretical basis, the accuracy of tampering detection, location and classification.

A Content Retrieval Method Using Pictures Taken from a Display Robust to Partial Luminance Change (부분 휘도 변화에 강인한 영상 촬영 기반 콘텐츠 검색 방법)

  • Lee, Joo-Young;Kim, Youn-Hee;Nam, Je-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.427-438
    • /
    • 2011
  • In this paper, we propose a content retrieval system using pictures taken from a display for more intelligent mobile services. We focus on the search robustness by minimizing the influence of photographing conditions such as changes in the illumination intensity. For an efficient search and precise detection, as well as robustness, we use a two-step comparison method based on indexing features and a binary map based on luminance and chrominance difference with the adjacent blocks. We also evaluate the proposed algorithm by comparing with the existing algorithms, and we show the content retrieval system that we've implemented using the proposed algorithm.

Video Copy Detection Algorithm Against Online Piracy of DTV Broadcast Program (DTV 방송프로그램의 온라인 불법전송 차단을 위한 비디오 복사본 검출 알고리즘)

  • Kim, Joo-Sub;Nam, Je-Ho
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.662-676
    • /
    • 2008
  • This paper presents a video copy detection algorithm that blocks online transfer of illegally copied DTV broadcast programs. Particularly, the proposed algorithm establishes a set of keyframes by detecting abrupt changes of luminance, and then exploits the spatio-temporal features of keyframes. Comparing with the preregistered features stored in the database of DTV broadcast programs, the proposed scheme performs a function of video filtering in order to distinguish whether an uploaded video is illegally copied or not. Note that we analyze only a set of keyframes instead of an entire video frame. Thus, it is highly efficient to identify illegal copied video when we deal with a vast size of broadcast programs. Also, we confirm that the proposed technique is robust to a variety of video edit-effects that are often applied by online video redistribution, such as apsect-ratio change, logo insertion, caption insertion, visual quality degradation, and resolution change (downscaling). In addition, we perform a benchmark test in which the proposed scheme outperforms previous techniques.

A Robust Video Fingerprinting Algorithm Based on Centroid of Spatio-temporal Gradient Orientations

  • Sun, Ziqiang;Zhu, Yuesheng;Liu, Xiyao;Zhang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2754-2768
    • /
    • 2013
  • Video fingerprints generated from global features are usually vulnerable against general geometric transformations. In this paper, a novel video fingerprinting algorithm is proposed, in which a new spatio-temporal gradient is designed to represent the spatial and temporal information for each frame, and a new partition scheme, based on concentric circle and rings, is developed to resist the attacks efficiently. The centroids of spatio-temporal gradient orientations (CSTGO) within the circle and rings are then calculated to generate a robust fingerprint. Our experiments with different attacks have demonstrated that the proposed approach outperforms the state-of-the-art methods in terms of robustness and discrimination.

Efficient video matching method for illegal video detection (불법 동영상 검출을 위한 효율적인 동영상 정합 방법)

  • Choi, Minseok
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.179-184
    • /
    • 2022
  • With the development of information and communication technology, the production and distribution of digital contents is rapidly increasing, and the distribution of illegally copied contents also increases, causing various problems. In order to prevent illegal distribution of contents, a DRM (Digital Rights Management)-based approach can be used, but in a situation where the contents are already copied and distributed, a method of searching and detecting the duplicated contents is required. In this paper, a duplication detection method based on the contents of video content is proposed. The proposed method divides the video into scene units using the visual rhythm extracted from the video, and hierarchically applies the playback time and color feature values of each divided scene to quickly and efficiently detect duplicate videos in a large database. Through experiments, it was shown that the proposed method can reliably detect various replication modifications.

Detection of Colluded Multimedia Fingerprint using LDPC and BIBD (LDPC와 BIBD를 이용한 공모된 멀티미디어 핑거프린트의 검출)

  • Rhee Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.68-75
    • /
    • 2006
  • Multimedia fingerprinting protects multimedia content from illegal redistribution by uniquely marking every copy of the content distributed to each user. Differ from a symmetric/asymmetric scheme, fingerprinting schemes, only regular user can know the inserted fingerprint data and the scheme guarantee an anonymous before recontributed data. In this paper, we present a scheme which is the algorithm using LDPC(Low Density Parity Check) for detection of colluded multimedia fingerprint and correcting errors. This proposed scheme is consists of the LDPC block, Hopfield Network and the algorithm of anti-collusion code generation. Anti-collusion code based on BIBD(Balanced Incomplete Block Design) was made 100% collusion code detection rate about the linear collusion attack(average, AND and OR) and LD% block for the error bits correction confirmed that can correct error until AWGN 0dB.

Content based Video Copy Detection Using Spatio-Temporal Ordinal Measure (시공간 순차 정보를 이용한 내용기반 복사 동영상 검출)

  • Jeong, Jae-Hyup;Kim, Tae-Wang;Yang, Hun-Jun;Jin, Ju-Kyong;Jeong, Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • In this paper, we proposed fast and efficient algorithm for detecting near-duplication based on content based retrieval in large scale video database. For handling large amounts of video easily, we split the video into small segment using scene change detection. In case of video services and copyright related business models, it is need to technology that detect near-duplicates, that longer matched video than to search video containing short part or a frame of original. To detect near-duplicate video, we proposed motion distribution and frame descriptor in a video segment. The motion distribution descriptor is constructed by obtaining motion vector from macro blocks during the video decoding process. When matching between descriptors, we use the motion distribution descriptor as filtering to improving matching speed. However, motion distribution has low discriminability. To improve discrimination, we decide to identification using frame descriptor extracted from selected representative frames within a scene segmentation. The proposed algorithm shows high success rate and low false alarm rate. In addition, the matching speed of this descriptor is very fast, we confirm this algorithm can be useful to practical application.

CNVR Detection Reflecting the Properties of the Reference Sequence in HLA Region (레퍼런스 시퀀스의 특성을 고려한 HLA 영역에서의 CNVR 탐지)

  • Lee, Jong-Keun;Hong, Dong-Wan;Yoon, Jee-Hee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.712-716
    • /
    • 2010
  • In this paper, we propose a novel shape-based approach to detect CNV regions (CNVR) by analyzing the coverage graph obtained by aligning the giga-sequencing data onto the human reference sequence. The proposed algorithm proceeds in two steps: a filtering step and a post-processing step. In the filtering step, it takes several shape parameters as input and extracts candidate CNVRs having various depth and width. In the post-processing step, it revises the candidate regions to make up for errors potentially included in the reference sequence and giga-sequencing data, and filters out regions with high ratio of GC-contents, and returns the final result set from those candidate CNVRs. To verify the superiority of our approach, we performed extensive experiments using giga-sequencing data publicly opened by "1000 genome project" and verified the accuracy by comparing our results with those registered in DGV database. The result revealed that our approach successfully finds the CNVR having various shapes (gains or losses) in HLA (Human Leukocyte Antigen) region.