• Title/Summary/Keyword: Content-based Classification

검색결과 452건 처리시간 0.03초

The Development of Content Management System for Culture & Tourism Based on Recursive Relation Object Model (순환관계 객체모델에 기반한 문화관광 콘텐츠관리시스템 개발)

  • Shin Dong-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • 제11권2호
    • /
    • pp.263-273
    • /
    • 2006
  • The remarkable development of the internet causes us to have too many homepages and content, to be specialized and subdivided, and to need 'CMS'(Content Management System). Currently, CMS have been developed by many solution providers and studied in many ways. However, it is hard to find a system which is able to construct the specified Culture & Tourism content rapidly and managed them efficiently. Step on these requirement, this paper focus on design and implementation of unified CMS based on recursive relation object model which can be satisfied the demand of the usual people's information service of Culture & Tourism and which can be installed and managed the standardized Culture & Tourism content easily.

  • PDF

A Korean Emotion Features Extraction Method and Their Availability Evaluation for Sentiment Classification (감정 분류를 위한 한국어 감정 자질 추출 기법과 감정 자질의 유용성 평가)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Korean Journal of Cognitive Science
    • /
    • 제19권4호
    • /
    • pp.499-517
    • /
    • 2008
  • In this paper, we propose an effective emotion feature extraction method for Korean and evaluate their availability in sentiment classification. Korean emotion features are expanded from several representative emotion words and they play an important role in building in an effective sentiment classification system. Firstly, synonym information of English word thesaurus is used to extract effective emotion features and then the extracted English emotion features are translated into Korean. To evaluate the extracted Korean emotion features, we represent each document using the extracted features and classify it using SVM(Support Vector Machine). In experimental results, the sentiment classification system using the extracted Korean emotion features obtained more improved performance(14.1%) than the system using content-words based features which have generally used in common text classification systems.

  • PDF

Development of Artificial Intelligence Education based Convergence Education Program for Classifying of Reptiles and Amphibians (파충류와 양서류 분류를 위한 인공지능 교육 기반의 융합 교육 프로그램 개발)

  • Yi, Soyul;Lee, YoungJun
    • Journal of Convergence for Information Technology
    • /
    • 제11권12호
    • /
    • pp.168-175
    • /
    • 2021
  • In this study, a transdisciplinary convergence education program was developed to enhance the understanding for classification of reptiles and amphibians in biology education and also to increase AI (Artificial Intelligence) capability by using artificial intelligence education. The main content is to solve the classification of reptiles and amphibians that has been dealt with for a long time in biology education, using a decision tree and ML4K (Machine Learnig for Kids), it was designed for a total of 3 lessons. Experts review was conducted on the developed education program, as a result, the I-CVI(Item Content Validity Index) value was .88~1.00 so that can secure content validity. This education program has the advantage of being able to simultaneously learn about the learning contents of artificial intelligence in informatics and the classification of vertebrates in the biological education. In addition, since it is configured to minimize the cognitive load in the AI using part, it is characterized by the fact that all of any teachers can apply it their lesson easily.

DDC in DSpace: Integration of Multi-lingual Subject Access System in Institutional Digital Repositories

  • Roy, Bijan Kumar;Biswas, Subal Chandra;Mukhopadhyay, Parthasarathi
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제7권4호
    • /
    • pp.71-84
    • /
    • 2017
  • The paper discusses the nature of Knowledge Organization Systems (KOSs) and shows how these can support digital library users. It demonstrates processes related to integration of KOS like the Dewey Decimal Classification, $22^{nd}$ edition (DDC22) in DSpace software (http://www.dspace.org/) for organizing and retrieving (browsing and searching) scholarly objects. An attempt has been made to use the DDC22 available in Bengali language and highlights the required mechanisms for system-level integration. It may help a repository administrator to build an IDR (Institutional Digital Repository) integrated with SKOS-enabled multilingual subject access systems for supporting subject descriptors based indexing (DC.Subject metadata element), structured navigation (browsing) and efficient searching.

Personalized Anti-spam Filter Considering Users' Different Preferences

  • Kim, Jong-Wan
    • Journal of Korea Multimedia Society
    • /
    • 제13권6호
    • /
    • pp.841-848
    • /
    • 2010
  • Conventional filters using email header and body information equally judge whether an incoming email is spam or not. However this is unrealistic in everyday life because each person has different criteria to judge what is spam or not. To resolve this problem, we consider user preference information as well as email category information derived from the email content. In this paper, we have developed a personalized anti-spam system using ontologies constructed from rules derived in a data mining process. The reason why traditional content-based filters are not applicable to the proposed experimental situation is described. In also, several experiments constructing classifiers to decide email category and comparing classification rule learners are performed. Especially, an ID3 decision tree algorithm improved the overall accuracy around 17% compared to a conventional SVM text miner on the decision of email category. Some discussions about the axioms generated from the experimental dataset are given too.

Factors Affecting the Sales of Newspapers and Magazines Based on Concise Catalog

  • Dayou Jiang
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.498-512
    • /
    • 2023
  • The traditional newspaper industry faces the opportunities and challenges of industry transformation and integration with new media. Consequently, the catalogs of newspapers and magazines are also updated. In this study, necessary information on catalogs was obtained and used to analyze the overall development trend of the newspaper industry. A word frequency analysis was then performed on the introduction and product categories of the catalogs, and the content and types of newspapers and magazines were examined. Furthermore, related factors such as price, number of pages, publishing frequency, and best-selling status were analyzed; the correlation among factors affecting best-selling status was also explored. Subsequently, each element and a combination of elements were used to generate a dataset, build three classification models, and analyze the accuracy of predictions of whether newspapers sold well under other circumstances. The experimental results showed that price is the most critical factor affecting the best-selling status of newspapers and magazines. Publishing frequency and the number of pages were also found to be significant indicators that impact people's subscription choices. Finally, a competitive strategy regarding content, price, quality, and positioning was developed.

Development of Personalized Media Contents Curation System based on Emotional Information (감성 정보 기반 맞춤형 미디어콘텐츠 큐레이션 시스템 개발)

  • Im, Ji-Hui;Chang, Du-Seong;Choe, Ho-Seop;Ock, Cheol-Young
    • The Journal of the Korea Contents Association
    • /
    • 제16권12호
    • /
    • pp.181-191
    • /
    • 2016
  • We analyzed the search word of the media content in the IPTV service, and as a result we found that an important factor is general meta information as well as content(material, plot, etc.) and emotion information in the media content selection criteria of customers. Therefore, in this research, in order to efficiently provide various media contents of IPTV to users, we designed the emotion classification system for utilizing the emotion information of the media content. Next, we proposed 'personalized media contents curation system based on emotion information' for organizing the media contents, through the various processing steps. Finally, to demonstrate the effectiveness of this system, we conducted a user satisfaction survey(72.0 points). In addition, the results of comparing the results based on popularity and the results of the proposed system showed that the ratio leading to the actual users' viewing behavior was 10 times higher.

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • 제7권12호
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

Semi-Automatic Management of Classification Scheme with Interoperability (상호운용적 분류체계 관리를 위한 반자동 분류체계 관리방안)

  • Lee, Won-Goo;Shin, Sung-Ho;Kim, Kwang-Young;Jeon, Do-Heon;Yoon, Hwa-Mook;Sung, Won-Kyung;Lee, Min-Ho
    • The Journal of the Korea Contents Association
    • /
    • 제11권12호
    • /
    • pp.466-474
    • /
    • 2011
  • Under the knowledge-based economy in 21C, the convergence and complexity in science and technology are being more active. Therefore, we have science and technology are classified properly, make not easy to construct the system to new next generation area. Thus we suggest the systematic solution method to flexibly extend classification scheme in order for content management and service organizations. In this way, we expect that the difficult of classification scheme management is minimized and the expense of it is spared.

Development of KPCS(Korean Patient Classification System for Nurses) Based on Nursing Needs (간호요구 정도에 기초한 한국형 환자분류도구(KPCS)의 개발)

  • Song, Kyung Ja;Kim, Eun Hye;Yoo, Cheong Suk;Park, Hae Ok;Park, Kwang Ok
    • Journal of Korean Clinical Nursing Research
    • /
    • 제15권1호
    • /
    • pp.5-17
    • /
    • 2009
  • Purpose: This study was to develop a factor-type patient classification system for general nursing unit based on nursing needs (KPCS; Korean patient classification system for nurses). Method: We reviewed workload management system for nurses(WMSN) of Walter Reed Medical Center, Korean patient classification system for ICU, and nursing activities in nursing records and developed the first version of KPCS. The final version KPCS was evaluated via validity and reliability verifications based on panel discussions and data from 800 patient classifications. Content validity was performed by Delphi method and concurrent validity was verified by the correlation of two tools (r=.71). Construct validity was also tested by medical department (p<.001), patient type (p<.001), and nurse intuition (p<.001). These verifications were performed from April to October, 2008. Results: The KPCS has 75 items in classifying 50 nursing activities, and categorized into 12 different nursing area (measuring vital sign, monitoring, respiratory treatment, hygiene, diet, excretion, movement, examination, medication, treatment, special treatment, and education/emotional support). Conclusion: The findings of the study showed sound reliability and validity of KPCS based on nursing needs. Further study is mandated to refine the system and to develop index score to estimate the necessary number of nurses for adequate care.