• 제목/요약/키워드: Content-based Classification

검색결과 452건 처리시간 0.024초

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

Music Genre Classification Based on Timbral Texture and Rhythmic Content Features

  • Baniya, Babu Kaji;Ghimire, Deepak;Lee, Joonwhon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.204-207
    • /
    • 2013
  • Music genre classification is an essential component for music information retrieval system. There are two important components to be considered for better genre classification, which are audio feature extraction and classifier. This paper incorporates two different kinds of features for genre classification, timbral texture and rhythmic content features. Timbral texture contains several spectral and Mel-frequency Cepstral Coefficient (MFCC) features. Before choosing a timbral feature we explore which feature contributes less significant role on genre discrimination. This facilitates the reduction of feature dimension. For the timbral features up to the 4-th order central moments and the covariance components of mutual features are considered to improve the overall classification result. For the rhythmic content the features extracted from beat histogram are selected. In the paper Extreme Learning Machine (ELM) with bagging is used as classifier for classifying the genres. Based on the proposed feature sets and classifier, experiment is performed with well-known datasets: GTZAN databases with ten different music genres, respectively. The proposed method acquires the better classification accuracy than the existing approaches.

Framework for Content-Based Image Identification with Standardized Multiview Features

  • Das, Rik;Thepade, Sudeep;Ghosh, Saurav
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.174-184
    • /
    • 2016
  • Information identification with image data by means of low-level visual features has evolved as a challenging research domain. Conventional text-based mapping of image data has been gradually replaced by content-based techniques of image identification. Feature extraction from image content plays a crucial role in facilitating content-based detection processes. In this paper, the authors have proposed four different techniques for multiview feature extraction from images. The efficiency of extracted feature vectors for content-based image classification and retrieval is evaluated by means of fusion-based and data standardization-based techniques. It is observed that the latter surpasses the former. The proposed methods outclass state-of-the-art techniques for content-based image identification and show an average increase in precision of 17.71% and 22.78% for classification and retrieval, respectively. Three public datasets - Wang; Oliva and Torralba (OT-Scene); and Corel - are used for verification purposes. The research findings are statistically validated by conducting a paired t-test.

신경망을 이용한 내용기반 영상 분류 (A Content-Based Image Classification using Neural Network)

  • 이재원;김상균
    • 한국멀티미디어학회논문지
    • /
    • 제5권5호
    • /
    • pp.505-514
    • /
    • 2002
  • 본 논문에서는 내용기반 영상 분류를 위한 방법론으로써 신경망을 이용한 방법을 제안한다. 분류 대상 영상은 인터넷상의 다양한 영상들 중에서 전경과 배경의 구분이 있는 객체 영상이다. 전처리 과정에서 영역 분할을 이용하여 영상 내에서 배경을 제거하고 객체 영역을 추출한다. 분류를 위한 특징은 웨이블릿 변환 후 푸출된 형태 특징과 질감특징을 이용한다 추출된 특징 값들을 이용하여 영상들에 대한 학습패턴을 생성하고 신경망 분류기를 구성 한다. 신경망의 학습 알고리즘은 역전파 알고리즘을 사용한다. 가장 효과적인 질감특징을 선 택 하기 위한 실험에서는 대각 모멘트가 가장 높은 분류률을 보여 주었다. 배경을 제거 하고 대각 모멘트를 특징으로 사용하여 실험하였을 때, 30종류에서 각 10개씩 총 300개의 학습 데이터와300개의 테스트 데이터에 대하여 각각 72.3%와 67%의 정분류률을 보였다.

  • PDF

Gender Classification of Low-Resolution Facial Image Based on Pixel Classifier Boosting

  • Ban, Kyu-Dae;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.347-355
    • /
    • 2016
  • In face examinations, gender classification (GC) is one of several fundamental tasks. Recent literature on GC primarily utilizes datasets containing high-resolution images of faces captured in uncontrolled real-world settings. In contrast, there have been few efforts that focus on utilizing low-resolution images of faces in GC. We propose a GC method based on a pixel classifier boosting with modified census transform features. Experiments are conducted using large datasets, such as Labeled Faces in the Wild and The Images of Groups, and standard protocols of GC communities. Experimental results show that, despite using low-resolution facial images that have a 15-pixel inter-ocular distance, the proposed method records a higher classification rate compared to current state-of-the-art GC algorithms.

머신러닝 기반의 디지털 방송 프로그램 유형 분류 및 활용 방안 연구 (A Study of the Classification and Application of Digital Broadcast Program Type based on Machine Learning)

  • 윤상혁;이소현;김희웅
    • 지식경영연구
    • /
    • 제20권3호
    • /
    • pp.119-137
    • /
    • 2019
  • With the recent spread of digital content, more people have been watching the digital content of TV programs on their PCs or mobile devices, rather than on TVs. With the change in such media use pattern, genres(types) of broadcast programs change in the flow of the times and viewers' trends. The programs that were broadcast on TVs have been released in digital content, and thereby people watching such content change their perception. For this reason, it is necessary to newly and differently classify genres(types) of broadcast programs on the basis of digital content, from the conventional classification of program genres(types) in broadcasting companies or relevant industries. Therefore, this study suggests a plan for newly classifying broadcast programs through using machine learning with the log data of people watching the programs in online media and for applying the new classification. This study is academically meaningful in the point that it analyzes and classifies program types on the basis of digital content. In addition, it is meaningful in the point that it makes use of the program classification algorithm developed in relevant industries, and especially suggests the strategy and plan for applying it.

그래프 기반 음악 추천을 위한 소리 데이터를 통한 태그 자동 분류 (Automatic Tag Classification from Sound Data for Graph-Based Music Recommendation)

  • 김태진;김희찬;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권10호
    • /
    • pp.399-406
    • /
    • 2021
  • 콘텐츠 산업의 꾸준한 성장에 따라 수많은 콘텐츠 중에서 개인의 취향에 적합한 콘텐츠를 자동으로 추천하는 연구의 필요성이 증가하고 있다. 콘텐츠 자동 추천의 정확도를 향상시키기 위해서는 콘텐츠에 대한 사용자의 선호 이력을 바탕으로 하는 기존 추천 기법과 더불어 콘텐츠의 메타데이터 및 콘텐츠 자체에서 추출할 수 있는 특징을 융합한 추천 기법이 필요하다. 본 연구에서는 음악의 소리 데이터로부터 태그 정보를 분류하는 LSTM 기반의 모델을 학습하고 분류된 태그 정보를 음악의 메타 데이터로 추가하여, 그래프 임베딩 시 콘텐츠의 특징까지 고려할 수 있는 KPRN 기반의 새로운 콘텐츠 추천 방법을 제안한다. 카카오 아레나 데이터 기반 실험 결과, 본 연구의 제안 방법은 기존의 임베딩 기반 추천 방법보다 우수한 추천 정확도를 보였다.

의미적 연관태그와 이미지 내용정보를 이용한 웹 이미지 분류 (Web Image Classification using Semantically Related Tags and Image Content)

  • 조수선
    • 인터넷정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.15-24
    • /
    • 2010
  • 본 논문에서는 대용량 온라인 이미지 공유 사이트를 적용 도메인으로 하여 이미지 검색의 만족도를 높이고자 태그의 의미적 연관성과 이미지 자체의 내용 정보를 결합하는 이미지 분류 방법을 제안한다. 이미지 검색 및 분류 알고리즘이 플리커와 같은 대용량 이미지 공유 사이트에서 활용될 수 있으려면 실제 웹상의 태깅된 이미지를 대상으로 한 적용이 가능해야 한다. 제안된 알고리즘은 'bag of visual word'기반의 이미지 내용으로 웹 이미지를 분류하기 위한 것으로서, 의미적 연관태그를 이용해 일차 검색된 이미지들을 훈련 데이터로 사용하여 카테고리 모델을 훈련하고, PLSA를 적용하여 평가 이미지들을 분류하는 것이다. 제안된 방법으로 플리커의 웹 이미지들을 대상으로 실험한 결과, 태그 정보를 이용한 기존의 방법에 비해 우수한 검색 정확도 및 재현율을 확인할 수 있었다.

Intention Classification for Retrieval of Health Questions

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제7권1호
    • /
    • pp.101-120
    • /
    • 2017
  • Healthcare professionals have edited many health questions (HQs) and their answers for healthcare consumers on the Internet. The HQs provide both readable and reliable health information, and hence retrieval of those HQs that are relevant to a given question is essential for health education and promotion through the Internet. However, retrieval of relevant HQs needs to be based on the recognition of the intention of each HQ, which is difficult to be done by predefining syntactic and semantic rules. We thus model the intention recognition problem as a text classification problem, and develop two techniques to improve a learning-based text classifier for the problem. The two techniques improve the classifier by location-based and area-based feature weightings, respectively. Experimental results show that, the two techniques can work together to significantly improve a Support Vector Machine classifier in both the recognition of HQ intentions and the retrieval of relevant HQs.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.