• Title/Summary/Keyword: Content layer

Search Result 1,655, Processing Time 0.032 seconds

Effect of Fines Distribution on Press Dewatering and Physical Properties of Multi-ply Sheet

  • Lee, Hak-Lae;Youn, Hye-Jung;Kang, Tae-Young;Choi, Ik-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.36-41
    • /
    • 2008
  • Multi-ply sheet forming has many advantages including the possibility of using wide range of materials in a given structure, lowering production cost, making higher grammage products and so on. But, incorrect structure of sheet makes flow resistance higher so that it shows poor dewatering in press section. One of major factors that affect sheet structure and dewatering property is fines content in each layer. We, therefore, examined the press dewatering of multi-ply sheet that has the different fines content in each layer and the effect of fines distribution on physical properties of sheet to find a technology for optimum utilization of raw materials. In case of two layered sheet, the sheet which was composed of layers with the different flow resistance showed higher dewatering rate than one which has the same flow resistance. And the more difference in fines content for layers existed, the more dewatering occurred. For three layered sheets, dewatering is mainly dependent on fines content of bottom layer. Strength properties were affected by dewatering degree and multi-ply sheet structure.

Earth Hummocks on the Crater Floor of Baegnokdam at Mt. Halla (한라산 백록담 화구저의 유상구조토)

  • 김태호
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.3
    • /
    • pp.233-246
    • /
    • 2001
  • Topography and soil characteristics of earth hummocks are examined in the summit crater of Mt. Halla in order to evaluate their morphoclimatic significance as an indicator of a periglacial environment. The hummocks are generally oval in outline, and they have a diameter of 42 to 200 cm and a height of 9 to 27 cm Seventeen hummocks are distributed In a 5$\times$5 m quadrat at an interval of 20 to 40 cm Excavation reveals the cryoturbated soil profiles which consist of upper dark brown layer and lower brown layer. The dark brown layer has 61.8% total clay and silt content, implying Its high frost susceptibility Earth hummocks have the dry density of 0.761 to 1.009 g/㎤ the void ratio of 1420 to 2.008, and the moisture content of 24.2 to 68.8% by weight, respectively. The hummocky soils become compacted and desiccated downward. Earth hummocks are frozen as a hard solid mass during winter and early spring, and freezing fronts reach about 45 cm below their apices. The layer with high lute content appears in the upper horizon of dark brown soil. but Ice lenses are not so much segregated The moisture content of hummocky soils generally increases up to 73.9 to 118.80% for dark brown layer and 49.9 to 82.8% for brown layer during thins period Because the cohesive soil of earth hummocks indicates 72.8% of the moisture content as a liquid limit, the dark brown layer is highly fluid and consequently subject to cryoturbation processes.

  • PDF

Physicochemical Properties and White Layer Cake Making Potentialities of Wheat Flour and Soy Protein Isolate Blends (분리 콩단백 복합분의 이화학적 특성과 white Layer cake 제조적성)

  • Lee, Yong-Suk;Park, Young-Seo;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.534-542
    • /
    • 2006
  • The protein contents of soy protein isolate (SPI) and soft wheat flours were 83.5% and 8.5%, respectively. The addition of SPI increased the protein content but decreased the sedimentation value. Alkaline water retention capacity (AWRC) value increased with SPI addition and was highly correlated with protein content. Increasing SPI flour content significantly decreased the maximum, minimum and final viscosities. Mixograph peak time was positively correlated with protein content and AWRC. The PH and specific gravity of the cake batter increased with increasing SPI content. The SPI addition reduced the loaf and specific loaf volume compared with soft wheat flour. The lightness of the cake crust decreased, while the redness and yellowness increased, with SPI flour addition. SPI addition resulted in a decrease of overall acceptability, but an increase in hardness.

Effect of the Millet and Waxy Millet on Properties of White Layer Cake (메조 및 차조 첨가가 White Layer Cake의 품질특성과 저장에 미치는 영향)

  • Lee, Myung-Ho;Chang, Hak-Gil;Yoo, Yang-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.395-402
    • /
    • 2005
  • White layer cakes with 10-50% content of domestic millet and waxy millet were carried out to determine how the content of millet and waxy millet affected Quality and properties of a product. The 10% content of waxy millet resulted in the greatest volume, which decreased with the increase in the content of millet and waxy millet; up to 40% content of millet and waxy millet made no significant difference in weight from the control one. The specific loaf volume decreased with the increase in the content of millet and waxy millet. In terms of crum color, as the content of millet and waxy millet increased, the value of L tended to decrease, making it darker, and there was a significant increase in the value of a and b. As for crust color, the value of L, a, and b tended to increase with the increase in the content of millet and waxy millet, making it darker, but with no significant difference from the control one. In terms of texture, 10% content of millet and 10-20% content of waxy millet made no significant difference in hardness from the control one; as for retrogradation, waxy millet tended to make greater increase in hardness than millet. 5℃ storage resulted more rapidly in retrogradation than 25℃. The sensory evaluation showed that with the increase in the content, waxy millet, millet, and the control in order served to make it darker and harder in terms of external properties, with small pores, uneven texture, and reduced flavor in terms of internal properties. There was no significant difference between the cake with 10-20% content of millet and waxy millet and the control one in making a white layer cake by adding millet and waxy millet.

Effects of Alloying Elements on the Corrosion Layer Formation of Pb-Grid/Active Materials Interface (Pb 기판/활물질 계면의 부식층형성에 미치는 합금원소영향)

  • Oh, Se-Woong;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.225-233
    • /
    • 2007
  • Effects of alloying elements on the corrosion layer formation of Pb-grid/active materials interface has been researched for improvement of corrosion resistance of Pb-Ca alloy. For this research, various amounts of alloying elements such as Sn, Ag and Ba were added to the Pb-Ca alloys and investigated their corrosion behaviors. Batteries fabricated by using these alloys as cathode grids were subjected to life cycle test. Overcharge life cycle test was carried out at $75^{\circ}C$, 4.5 A, for 110 hrs. with KS standard (KSC 8504). And then, after keeping the battery with open circuit state for 48 hr, discharge was carried out at 300A for 30 sec. Corrosion morphology and interface between Pb-grid and active materials were investigated by using ICP, SEM, WDX, and LPM. Corrosion layer of Pb-Ca alloy got thicken with increasing Ca content. For Pb-Ca-Sn alloy, thickness of corrosion layer decreased as Sn and Ag content increased gradually. In case of Pb-Ca-Sn-Ba alloy, thickness of corrosion layer decreased up to 0.02 wt% Ba addition, whereas, it was not changed in case of above 0.02 wt% Ba addition.

Oxide Layer Analysis of Uncoated Boron Steel Sheet for Hot Stamping According to the Atmosphere Oxygen Content (비도금 핫스탬핑용 보론강판의 분위기 산소량에 따른 산화층 분석)

  • J. H. Lee;T. H. Choi;J. H. Song;G. H. Bae
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.160-165
    • /
    • 2023
  • As the supply of eco-friendly vehicles increases, the application rate of hot stamping components is rising to reduce vehicle weight and improve safety. Although Al-Si coated steel sheets are commonly used in hot stamping processes, their manufacturing costs are elevated due to process patents and royalties. Various hot stamping studies have been conducted to reduce these production costs. In this study, we derived a process control method for suppressing the oxide layer of hot stamping parts using uncoated boron steel sheets. Firstly, hat-shaped parts were hot stamped under atmospheric conditions to analyze the tendency of oxide layer formation by location. Then, the Gleeble system was used to observe oxide layer formation based on oxygen content under various atmospheric conditions. Finally, the oxide layer thickness was quantitatively measured using SEM images.

Contribution Rate on Soil Pysico-Chemical Properties Related to Fruit Quality of 'Kyoho' Grapevines (포도 '거봉' 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Choi, In-Myung;Han, Jeom-Wha;Cho, Jung-Gun;Park, Seo-Jun;Lim, Tae-Jun;Yun, Hea-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.782-788
    • /
    • 2010
  • Detail management standard on soil conditions in 'Kyoho' grapes were not yet made. Therefore, this study was carried out to investigate the optimum soil environmental conditions on production of high fruit quality in 'Kyoho' grapes. We established using correlation between fruit quality and soil condition. These results were used to develop soil management guideline with promoting efficiency and minuteness in grape vineyard. Soil conditions were analyzed at total 80 vineyards in major grape producing areas such as Ansung, and Cheonan (40 orchards an area). The soil environmental factors affected fruit weight were soil pH of 36.6%, cultivation layer depth of 23.3%, and cation of 17.8%. The soil condition factors affected sugar content were soil hardness of 24.4%, cation of 24.1% and organic matter content of 22.1%. Cultivation layer depth, soil texture, and phosphate content were low as relative contribution. Coloring was involved with organic matter content, CEC (cation exchange capacity), and saturated hydraulic conductivity. while soil pH, cultivation layer depth, and phosphate content showed low contribution. Finally, relative contribution on fruit quality related with sugar content, fruit weight, and coloring were soil hardness of 28.0%, organic matter content of 25.0%, soil pH of 12.9%.

Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil (하해혼성 충적층 논토양 작토층과 경반층의 토양특성)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.

Effect of Cu-contained solders on shear strength of BGA solder joints

  • Shin, Chang-Keun;Huh, Joo-Youl
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.73-73
    • /
    • 2000
  • Shear strength of BGA solder joints on Cu pad was studied for Cu-contained Sn n.5 a and 2.5wt.% Cu) and Sn-Pb (o.5wt.% Cu) solders, with emphasis on the roles of the C Cu-Sn intermetallic layer thickness and the roughness of the interface between the i intermetallic layer and solder. The shear strength test was performed both for a as-soldered s이der joints with soldering reaction times of 1, 2, 4 min and for aged s이der j joints at 170 C up to 16 days. The Cu addition to both pure Sn and eutectic Sn-Pb s solders increased the intermetallic layer thickness at both soldering and aging t temperatures. The Cu addition also resulted in changes in the roughness of the interface b between the intermetallic layer and solder at as-soldered states. With increasing Cu c content. the interface roughened for Sn-Cu solders whereas it flattened for Sn-Pb-Cu s solders. The shear fractures in all solder joints investigated were confined in the bulk s solder rather than through the intermetallic layer. Therefore, the effect of Cu content in s solders on the shear strength of the solder joints was primarily attributed to its i influence on the micros$\sigma$ucture of bulk solder, such as the size and spatial distributions of CU6Sn5 precipitates. In addition, the critical intermetallic layer thickness for a m maximum shear strength seemed to depend on the Cu content in bulk solder.older.

  • PDF

Post-fire flexural behavior of functionally graded fiber-reinforced concrete containing rubber

  • Nematzadeh, Mahdi;Mousavi, Reza
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.417-435
    • /
    • 2021
  • The optimal distribution of steel fibers over different layers of concrete can be considered as an appropriate method in improving the structural performance and reducing the cost of fiber-reinforced concrete members. In addition, the use of waste tire rubber in concrete mixes, as one of the practical ways to address environmental problems, is highly significant. Thus, this study aimed to evaluate the flexural behavior of functionally graded steel fiber-reinforced concrete containing recycled tire crumb rubber, as a volume replacement of sand, after exposure to elevated temperatures. Little information is available in the literature regarding this subject. To achieve this goal, a set of 54 one-, two-, and three-layer concrete beam specimens with different fiber volume fractions (0, 0.25, 0.5, 1, and 1.25%), but the same overall fiber content, and different volume percentages of the waste tire rubber (0, 5, and 10%) were exposed to different temperatures (23, 300, and 600℃). Afterward, the parameters affecting the post-heating flexural performance of concrete, including flexural strength and stiffness, toughness, fracture energy, and load-deflection diagrams, along with the compressive strength and weight loss of concrete specimens, were evaluated. The results indicated that the flexural strength and stiffness of the three-layer concrete beams respectively increased by 10 and 7%, compared to the one-layer beam specimens with the same fiber content. However, the flexural performance of the two-layer beams was reduced relative to those with one layer and equal fiber content. Besides, the flexural strength, toughness, fracture energy, and stiffness were reduced by approximately 10% when a 10% of natural sand was replaced with tire rubber in the three-layer specimens compared to the corresponding beams without crumb rubber. Although the flexural properties of concrete specimens increased with increasing the temperature up to 300℃, these properties degraded significantly with elevating the temperature up to 600℃, leading to a sharp increase in the deflection at peak load.