For browsing, searching, and manipulating video documents, an indexing technique to describe video contents is required. Until now, the indexing process is mostly carried out by specialists who manually assign a few keywords to the video contents and thereby this work becomes an expensive and time consuming task. Therefore, automatic classification of video content is necessary. We propose a fully automatic and computationally efficient method for analysis and summarization of spots news video for 5 spots news video such as soccer, golf, baseball, basketball and volleyball. First of all, spots news videos are classified as anchor-person Shots, and the other shots are classified as news reports shots. Shot classification is based on image preprocessing and color features of the anchor-person shots. We then use the dominant color of the field and motion features for analysis of sports shots, Finally, sports shots are classified into five genre type. We achieved an overall average classification accuracy of 75% on sports news videos with 241 scenes. Therefore, the proposed method can be further used to search news video for individual sports news and sports highlights.
Heesun Yang;Seonghyeok Ahn;Seung-Hyun Kim;Seong-Joo Kang
Journal of the Korean Chemical Society
/
v.68
no.3
/
pp.160-175
/
2024
The purpose of this study is to examine the effects of a Chemistry I class based on an artificial intelligence (AI) classification model. To achieve this, the research investigated the development and application of a class utilizing an AI classification model in Chemistry I classes conducted at D High School in Gyeongbuk during the first semester of 2023. After selecting the curriculum content and AI tools, and determining the curriculum-AI integration education model as well as AI hardware and software, we developed detailed activities for the program and applied them in actual classes. Following the implementation of the classes, it was confirmed that students' self-efficacy improved in three aspects: chemistry concept formation, AI value perception, and AI-based maker competency. Specifically, the chemistry classes based on text and image classification models had a positive impact on students' self-efficacy for chemistry concept formation, enhanced students' perception of AI value and interest, and contributed to improving students' AI and physical computing abilities. These results demonstrate the positive impact of the Chemistry I class based on an AI classification model on students, providing evidence of its utility in educational settings.
본 연구에서는 내용기반 영상 데이터 검색을 위하여 변환 영역에서 위치 정보와 주파수 정보를 가지는 웨이블릿 성질을 이용하여 영상을 압축한 후에 저주파 성분에 의한 객체들의 특징을 추출하는 방안으로 Vector Quantization 을 이용한 class 별 영상 검색을 제시한다 내용기반 영상 검색의 주요특징들은 색상, 질감, 그리고 영상의 공간적인 특징을 고려한 특징 값 둥이 사용된다. 먼저 검색의 효율성을 높이기 위해 영상을 구성하는 특징 치 중에서 가장 빈도가 많은 class 부터 영상의 유사도를 검색한 후에 다음으로 영상을 구성하는 빈도가 큰 순서대로 DB 내에 저장되어 있는 영상과 비교를 하게 된다. DB내 영상 검색은 빈도수가 우선인 5개의 class를 기준으로 유사도를 측정해서 검색을 이룬다. 이러한 영상의 특징들을 어떻게 결합하고 특징 추출을 하느냐에 따라 검색의 효율성에 영향을 준다. 따라서 본 연구에서는 영상의 위치 정보와 주파수 정보를 가지는 웨이블릿 변환 후 얻어지는 저대역 부밴드에서의 공간적인 특성을 고려한 특징 값을 이용하여 Vector Quantization 알고리즘에 의해 정지영상의 객체 대표 특징들을 마르게 검색하고자 한다. 본 연구에서는 Haar Wavelet과 Vector Quantization 에서 색상과 질감의 가중치를 적용한 후 DB 에 저장된 영상과 유사도를 검색하는 방법을 취하고자 한다.
This study focuses on women and fashion in Korea between the 1960s and 1970s, when the government regulated the socio-cultural aspects of individuals while achieving remarkable economic industrialization, particularly through the representative popular weekly magazine 'Sunday-Seoul'. The scope of this study included 168 issues from September 22, 1968 to December 26, 1971. Two research methods were applied, literature research and content analysis research. First, the literature on Korean society, culture, women's fashion, the sociological, feminine and popular cultural studies were reviewed. Thereafter, the contents, cover, articles, pictorials were collected and analyzed for classification and identification of the women's images and women's fashion. In the case of fashion articles, the contents of vocabulary and description texts were highlighted, and in the case of pictorials, the visual elements such as images, silhouettes of clothes, details of features, and patterns of materials were assessed. The images of women in Sunday Seoul's articles and pictorials exhibited extreme opposite, presenting the most important purpose of marriage, 'wise mother and good wife' and 'image of sexual object' for men. The two images of women differed; however, there was one more female image 'industrial laborer' which was placed in the blind spot of interest. The characteristics of fashion which appeared in 'Sunday-Seoul' were 'uniform modern elegance' based on neat mini-style, and 'sexual image of exposure fashion' which endeavored to selectively borrow from overseas pictorials and trend-oriented articles. This could be viewed as a 'transformation of traditional Hanbok', 'avant-garde trend' and 'de-sexualization & indifference of fashion'.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.501-508
/
2023
This research endeavors to categorize a diverse range of hairstyles for both men and women in South Korea using hair images and subsequently generate 3D hair models based on this classification. The classification process relies on prominent visual features, resulting in the division of hairstyles into 14 distinct categories, including six styles for men and eight styles for women. By accurately matching the most appropriate hairstyle to the given hair image, the study aims to provide recommendations for the necessary hair models required for metaverse authoring tools, thus enabling realistic hair styling. This capability can be effectively utilized on platforms like metaverse, allowing users to seamlessly find and apply the 3D hair model that closely resembles their remotely captured or pre-existing hair images. Through this innovative approach, users can be presented with the most similar 3D hair model, enhancing their virtual hairstyling experience.
Journal of the Korean Society for information Management
/
v.41
no.1
/
pp.261-282
/
2024
This study proposed and evaluated electroencephalography (EEG)-based and eye-tracking-based methods to determine relevance by utilizing users' implicit relevance feedback while navigating content in a digital library. For this, EEG/eye-tracking experiments were conducted on 32 participants using video, image, and text data. To assess the usefulness of the proposed methods, deep learning-based artificial intelligence (AI) techniques were used as a competitive benchmark. The evaluation results showed that EEG component-based methods (av_P600 and f_P3b components) demonstrated high classification accuracy in selecting relevant videos and images (faces/emotions). In contrast, AI-based methods, specifically object recognition and natural language processing, showed high classification accuracy for selecting images (objects) and texts (newspaper articles). Finally, guidelines for implementing a digital library interface based on EEG, eye-tracking, and artificial intelligence technologies have been proposed. Specifically, a system model based on implicit relevance feedback has been presented. Moreover, to enhance classification accuracy, methods suitable for each media type have been suggested, including EEG-based, eye-tracking-based, and AI-based approaches.
The Transactions of The Korean Institute of Electrical Engineers
/
v.66
no.8
/
pp.1272-1277
/
2017
To assist radiologists for the characterization of breast masses, Computer-aided Diagnosis(CADx) system has been studied. The CADx system can improve the diagnostic accuracy of radiologists by providing objective information about breast masses. Morphological and texture features were extracted from the breast ultrasound images. Based on extracted features, the CADx system retrieves masses that are similar to a query mass from a reference library using a k-nearest neighbor (k-NN) approach. Eight similarity measures of distance, Euclidean, Chebyshev(Minkowski family), Canberra, Lorentzian($F_2$ family), Wave Hedges, Motyka(Intersection family), and Cosine, Dice(Inner Product family) are evaluated by ROC(Receiver Operating Characteristic) analysis. The Inner Product family measure used with the k-NN classifier provided slightly higher performance for classification of malignant and benign masses than those with the Minkowski, $F_2$, and Intersection family measures.
This study aims to discriminate differences in natural landscapes between the Cairngorms National Park in Scotland and the Jirisan National Park in Korea, using functions of content-based image retrieval such as texture, shape, and color. Digital photographs of each National Park were taken and selected. The low-level functions of photographic images were reduced to orthogonally rotated five factors. Based on the reduced factors, a linear decision boundary was obtained between Cairngorms landscapes and Jirisan landscapes. As a result, the discriminant function significantly delineated two groups, resulting in $x^2=63.40$ with df=5(p<0.001). Both the eigenvalue 2.417 and the value of wilks' lambda 0.29 supported that the most proportion of total variability came from the differences between the means of discriminant function of groups. It was estimated that four independent variables explained about 70.7% of total variance of dependent variable. The variable with the largest effect on landscapes was far region-related factor(r=1.07), followed by near region-related factor (r=0.90). A total of 90.7% of cross-validated grouped cases were correctly classified. It was interpreted that far distant regions, as well as near distant regions, had sufficient discrimination power for landscape classification between the Cairngorms National Park and the Jirisan National Park, so that landscape identity of the National Park over cultures was revealed by skylines in a most effective way. Relatively fewer factors making visual landscapes were effectively used to classify natural landscapes of the National Parks which had different semantics.
Conventional image quality studies have been focused on 'naturalness' and has relied on memory color. Memory colors are mainly formed for familiar objects with prior experience, and the more faithfully these memories are reflected, the more naturalness of the reproduced image quality increases. In particular, the brightness and saturation of memory colors play an important role in increasing the preference of image quality as well as naturalness. Therefore, in the case of existing image quality studies, image quality characteristics were studied focusing on natural objects and people with memory. We extracted representative images of each genre (sports, documentaries, news, entertainment and music, and movies), adjusted the brightness, contrast, and saturation of each image, and conducted an experiment to evaluate perceived quality. Based on situational context, the results of this classification indicated that genres of television content can be divided into two categories: proximate and indirect experiences. Proximate experience best characterizes outdoor sports, dramas, and nature documentaries, where their image qualities have shown to have a strong correlation with brightness and contrast. On the other hand, indirect experience best characterizes news, music shows and SF/action movies. The image quality perception for indirect experiences was shown to be closely related to and optimized by contrast and saturation.
Lim, Hye Jin;Jeong, Da Woon;Yoo, Seong Joon;Gu, Yeong Hyeon;Park, Jong Han
The Journal of Korean Institute of Next Generation Computing
/
v.14
no.6
/
pp.30-43
/
2018
Many studies have been carried out to retrieve images using colors, shapes, and textures which are characteristic of images. In addition, there is also progress in research related to the disease images of the crop. In this paper, to be a help to identify the disease occurred in crops grown in the agricultural field, we propose a similarity-based crop disease search system using the diseases image of horticulture crops. The proposed system improves the similarity retrieval performance compared to existing ones through the combination descriptor without using a single descriptor and applied the weight based calculation method to provide users with highly readable similarity search results. In this paper, a total of 13 Descriptors were used in combination. We used to retrieval of disease of six crops using a combination Descriptor, and a combination Descriptor with the highest average accuracy for each crop was selected as a combination Descriptor for the crop. The retrieved result were expressed as a percentage using the calculation method based on the ratio of disease names, and calculation method based on the weight. The calculation method based on the ratio of disease name has a problem in that number of images used in the query image and similarity search was output in a first order. To solve this problem, we used a calculation method based on weight. We applied the test image of each disease name to each of the two calculation methods to measure the classification performance of the retrieval results. We compared averages of retrieval performance for two calculation method for each crop. In cases of red pepper and apple, the performance of the calculation method based on the ratio of disease names was about 11.89% on average higher than that of the calculation method based on weight, respectively. In cases of chrysanthemum, strawberry, pear, and grape, the performance of the calculation method based on the weight was about 20.34% on average higher than that of the calculation method based on the ratio of disease names, respectively. In addition, the system proposed in this paper, UI/UX was configured conveniently via the feedback of actual users. Each system screen has a title and a description of the screen at the top, and was configured to display a user to conveniently view the information on the disease. The information of the disease searched based on the calculation method proposed above displays images and disease names of similar diseases. The system's environment is implemented for use with a web browser based on a pc environment and a web browser based on a mobile device environment.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.