This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.
Information identification with image data by means of low-level visual features has evolved as a challenging research domain. Conventional text-based mapping of image data has been gradually replaced by content-based techniques of image identification. Feature extraction from image content plays a crucial role in facilitating content-based detection processes. In this paper, the authors have proposed four different techniques for multiview feature extraction from images. The efficiency of extracted feature vectors for content-based image classification and retrieval is evaluated by means of fusion-based and data standardization-based techniques. It is observed that the latter surpasses the former. The proposed methods outclass state-of-the-art techniques for content-based image identification and show an average increase in precision of 17.71% and 22.78% for classification and retrieval, respectively. Three public datasets - Wang; Oliva and Torralba (OT-Scene); and Corel - are used for verification purposes. The research findings are statistically validated by conducting a paired t-test.
본 논문에서는 대용량 온라인 이미지 공유 사이트를 적용 도메인으로 하여 이미지 검색의 만족도를 높이고자 태그의 의미적 연관성과 이미지 자체의 내용 정보를 결합하는 이미지 분류 방법을 제안한다. 이미지 검색 및 분류 알고리즘이 플리커와 같은 대용량 이미지 공유 사이트에서 활용될 수 있으려면 실제 웹상의 태깅된 이미지를 대상으로 한 적용이 가능해야 한다. 제안된 알고리즘은 'bag of visual word'기반의 이미지 내용으로 웹 이미지를 분류하기 위한 것으로서, 의미적 연관태그를 이용해 일차 검색된 이미지들을 훈련 데이터로 사용하여 카테고리 모델을 훈련하고, PLSA를 적용하여 평가 이미지들을 분류하는 것이다. 제안된 방법으로 플리커의 웹 이미지들을 대상으로 실험한 결과, 태그 정보를 이용한 기존의 방법에 비해 우수한 검색 정확도 및 재현율을 확인할 수 있었다.
본 논문에서는 내용기반 영상 분류를 위한 방법론으로써 신경망을 이용한 방법을 제안한다. 분류 대상 영상은 인터넷상의 다양한 영상들 중에서 전경과 배경의 구분이 있는 객체 영상이다. 전처리 과정에서 영역 분할을 이용하여 영상 내에서 배경을 제거하고 객체 영역을 추출한다. 분류를 위한 특징은 웨이블릿 변환 후 푸출된 형태 특징과 질감특징을 이용한다 추출된 특징 값들을 이용하여 영상들에 대한 학습패턴을 생성하고 신경망 분류기를 구성 한다. 신경망의 학습 알고리즘은 역전파 알고리즘을 사용한다. 가장 효과적인 질감특징을 선 택 하기 위한 실험에서는 대각 모멘트가 가장 높은 분류률을 보여 주었다. 배경을 제거 하고 대각 모멘트를 특징으로 사용하여 실험하였을 때, 30종류에서 각 10개씩 총 300개의 학습 데이터와300개의 테스트 데이터에 대하여 각각 72.3%와 67%의 정분류률을 보였다.
Yoon, Yeo Chan;Park, So Young;Park, Soo Myoung;Lim, Heuiseok
ETRI Journal
/
제42권1호
/
pp.67-77
/
2020
Image captioning has received significant interest in recent years, and notable results have been achieved. Most previous approaches have focused on generating visual descriptions from images, whereas a few approaches have exploited visual descriptions for image classification. This study demonstrates that a good performance can be achieved for both description generation and image classification through an end-to-end joint learning approach with a loss function, which encourages each task to reach a consensus. When given images and visual descriptions, the proposed model learns a multimodal intermediate embedding, which can represent both the textual and visual characteristics of an object. The performance can be improved for both tasks by sharing the multimodal embedding. Through a novel loss function based on class activation mapping, which localizes the discriminative image region of a model, we achieve a higher score when the captioning and classification model reaches a consensus on the key parts of the object. Using the proposed model, we established a substantially improved performance for each task on the UCSD Birds and Oxford Flowers datasets.
디지털 기술의 발달과 인터넷의 대중화에 더불어 영상데이타의 생산과 교환이 더 자유로워짐에 따라 디지털 도서관, 영상처리, 데이타베이스 시스템과 같은 연구분야에서 내용기반 영상검색에 대한 관심이 높아지고 있다. 일반적으로 ´영상에 의한 질의´의 경우 사용자가 마음에 드는 영상이 없더라도 반듯이 진의 영상을 데이타베이스로부터 선택해야 하지만, ´스케치에 의한 질의´는 사용자의 생각에 따라 영상온 그림으로 표현할 수 있으므로 최근에 가장 많이 사용되는 질의 방법 중 하나이다. 본 논문에서는 스케치 진의와 영상 분류 방법을 이용하는 사바 기반의 영상검색 시스템을 제안한다. 본 시스템에서는 유사영상을 검색하기 위해 영상으로부터 색상 히스토그램과 Haar-웨이블릿 계수를 사용하고, leave-one-out 방법을 이용하여 영상을 분류하도록 하였다. 본 논문에서는 사진-그림, 자연 도시 등의 영상 분류론 통해 영상의 의미정보를 추출할 수 있을 뿐 아니라, 사용자 질의 영상을 분류하여, 질의 영상이 갖고 있는 의미공간으로 검색 공간을 축소하여 검색 시간을 단축시키는 효율성을 얻을 수 있었다.
콘텐트 기반 이미지 검색은 기존의 태그 또는 레이블이 있는 텍스트 기반의 검색이 아닌 이미지의 특징을 이용하여 검색하는 방법이다. 실생활 이미지 데이터는 태그나 레이블이 달려있는 경우가 많지 않기 때문에 텍스트 기반의 검색 방법을 사용하기 힘든 경우가 있다. 또한, 기존에 주로 사용되는 이미지 특징 벡터의 유사도를 사용하여 검색하는 방법은 추출 벡터의 유사도 기준으로 사용자가 의도한 결과가 나올지 확신할 수 없다. 예를 들어 사용자가 입력한 질의 이미지와 검색된 이미지들의 종류가 일치하는지의 문제가 있다. 본 논문에서는 사용자가 질의 이미지의 클래스를 예상하고 결과도 동일한 클래스를 원한다는 가정에 착안하여 이미지 검색 엔진의 성능을 개선하였다. 기존의 유사도 기반의 검색에 머신 러닝 기법을 사용한 이미지 분류기를 적용하여 질의와 동일한 클래스의 결과를 찾는 방법을 제안하였으며, 그 성능을 20개 카테고리에 속하는 11,530개의 이미지로 구성되어 있는 PASCAL VOC 공개 데이터를 이용하여 검증하였다.
In this paper, we propose a new content-based color image retrieval algorithm. The algorithm makes use of two features; colors as global features and block classification results as local features. More specifically, we obtain R, G, B color histograms and classify nonoverlapping small image blocks into texture, monotone, and various edges, then using these histograms and classification results were make a similarity measure. Experimental results show that retrieval rate of the proposed algorithm is higher than the previous method.
본 논문에서는 영상의 블록 분류 특성에 적응적인 대표 컬러 히스토그램 (representative color histogram)과 방향성 패턴 히스토그램 (directional pattern histogram)을 이용한 새로운 내용 기반 영상 검색 방법 (content-based image retrieval)을 제안한다. 제안한 방법에서는 영상을 일정한 크기의 블록으로 나누고, 분할된 블록의 분류 특성에 따라 컬러와 패턴 특징 벡터를 추출한다. 먼저 분할된 블록을 채도 (saturation)에 따라 휘도 블록 또는 컬러 블록으로 분류한 후, 휘도 블록에 대해서는 블록 평균휘도 쌍의 히스토그램을 구하고, 컬러 블록에 대해서는 블록 평균 컬러 쌍 히스토그램을 구함으로써 블록 분류 특징에 따라 컬러 특징 벡터를 추출한다. 또한 블록 휘도 변화의 기울기 (gradient)를 계산하여 방향성 분류를 행한 후 히스토그램을 계산함으로써 블록 방향성 패턴 특징을 추출한다. 본 논문에서 제안한 영상 검색 방법의 성능을 평가하기 위해서 컴퓨터 모의실험을 행한 결과 제안한 방법이 기존의 방법들보다 정확도 (precision) 및 특징 벡터 차원 (feature vector dimension) 크기 등의 객관적인 측면에서 우수함을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권7호
/
pp.2683-2702
/
2015
A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.