• Title/Summary/Keyword: Content Based Image Classification

Search Result 70, Processing Time 0.018 seconds

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

Framework for Content-Based Image Identification with Standardized Multiview Features

  • Das, Rik;Thepade, Sudeep;Ghosh, Saurav
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.174-184
    • /
    • 2016
  • Information identification with image data by means of low-level visual features has evolved as a challenging research domain. Conventional text-based mapping of image data has been gradually replaced by content-based techniques of image identification. Feature extraction from image content plays a crucial role in facilitating content-based detection processes. In this paper, the authors have proposed four different techniques for multiview feature extraction from images. The efficiency of extracted feature vectors for content-based image classification and retrieval is evaluated by means of fusion-based and data standardization-based techniques. It is observed that the latter surpasses the former. The proposed methods outclass state-of-the-art techniques for content-based image identification and show an average increase in precision of 17.71% and 22.78% for classification and retrieval, respectively. Three public datasets - Wang; Oliva and Torralba (OT-Scene); and Corel - are used for verification purposes. The research findings are statistically validated by conducting a paired t-test.

Web Image Classification using Semantically Related Tags and Image Content (의미적 연관태그와 이미지 내용정보를 이용한 웹 이미지 분류)

  • Cho, Soo-Sun
    • Journal of Internet Computing and Services
    • /
    • v.11 no.3
    • /
    • pp.15-24
    • /
    • 2010
  • In this paper, we propose an image classification which combines semantic relations of tags with contents of images to improve the satisfaction of image retrieval on application domains as huge image sharing sites. To make good use of image retrieval or classification algorithms on huge image sharing sites as Flickr, they are applicable to real tagged Web images. To classify the Web images by 'bag of visual word' based image content, our algorithm includes training the category model by utilizing the preliminary retrieved images with semantically related tags as training data and classifying the test images based on PLSA. In the experimental results on the Flickr Web images, the proposed method produced the better precision and recall rates than those from the existing method using tag information.

A Content-Based Image Classification using Neural Network (신경망을 이용한 내용기반 영상 분류)

  • 이재원;김상균
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.505-514
    • /
    • 2002
  • In this Paper, we propose a method of content-based image classification using neural network. The images for classification ate object images that can be divided into foreground and background. To deal with the object images efficiently, object region is extracted with a region segmentation technique in the preprocessing step. Features for the classification are texture and shape features extracted from wavelet transformed image. The neural network classifier is constructed with the extracted features and the back-propagation learning algorithm. Among the various texture features, the diagonal moment was more effective. A test with 300 training data and 300 test data composed of 10 images from each of 30 classes shows correct classification rates of 72.3% and 67%, respectively.

  • PDF

Image classification and captioning model considering a CAM-based disagreement loss

  • Yoon, Yeo Chan;Park, So Young;Park, Soo Myoung;Lim, Heuiseok
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.67-77
    • /
    • 2020
  • Image captioning has received significant interest in recent years, and notable results have been achieved. Most previous approaches have focused on generating visual descriptions from images, whereas a few approaches have exploited visual descriptions for image classification. This study demonstrates that a good performance can be achieved for both description generation and image classification through an end-to-end joint learning approach with a loss function, which encourages each task to reach a consensus. When given images and visual descriptions, the proposed model learns a multimodal intermediate embedding, which can represent both the textual and visual characteristics of an object. The performance can be improved for both tasks by sharing the multimodal embedding. Through a novel loss function based on class activation mapping, which localizes the discriminative image region of a model, we achieve a higher score when the captioning and classification model reaches a consensus on the key parts of the object. Using the proposed model, we established a substantially improved performance for each task on the UCSD Birds and Oxford Flowers datasets.

Web-based Image Retrieval and Classification System using Sketch Query (스케치 질의를 통한 웹기반 영상 검색과 분류 시스템)

  • 이상봉;고병철;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.703-712
    • /
    • 2003
  • With the explosive growth n the numbers and sizes of imaging technologies, Content-Based Image Retrieval (CBIR) has been attacked the interests of researchers in the fields of digital libraries, image processing, and database systems. In general, in the case of query-by-image, in user has to select an image from database to query, even though it is not his completely desired one. However, since query-by-sketch approach draws a query shape according to the user´s desire it can provide more high-level searching interface to the user compared to the query-b-image. As a result, query-by-sketch has been widely used. In this paper, we propose a Java-based image retrieval system that consists of sketch query and image classification. We use two features such as color histogram and Haar wavelets coefficients to search similar images. Then the Leave-One-Out method is used to classify database images. The categories of classification are photo & painting, city & nature, and sub-classification of nature image. By using the sketch query and image classification, w can offer convenient image retrieval interface to user and we can also reduce the searching time.

Image Classification Approach for Improving CBIR System Performance (콘텐트 기반의 이미지검색을 위한 분류기 접근방법)

  • Han, Woo-Jin;Sohn, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.816-822
    • /
    • 2016
  • Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.

Color Image Retrieval Using Block-based Classification (블록단위 특성분류를 이용한 컬러영상 검색)

  • 류명분;우석훈;박동권;원치선
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.63-66
    • /
    • 1996
  • In this paper, we propose a new content-based color image retrieval algorithm. The algorithm makes use of two features; colors as global features and block classification results as local features. More specifically, we obtain R, G, B color histograms and classify nonoverlapping small image blocks into texture, monotone, and various edges, then using these histograms and classification results were make a similarity measure. Experimental results show that retrieval rate of the proposed algorithm is higher than the previous method.

  • PDF

Content-based image retrieval using adaptive representative color histogram and directional pattern histogram (적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색)

  • Kim Tae-Su;Kim Seung-Jin;Lee Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.119-126
    • /
    • 2005
  • We propose a new content-based image retrieval using a representative color histogram and directional pattern histogram that is adaptive to the classification characteristics of the image blocks. In the proposed method the color and pattern feature vectors are extracted according to the characteristics o: the block classification after dividing the image into blocks with a fixed size. First, the divided blocks are classified as either luminance or color blocks depending on the saturation of the block. Thereafter, the color feature vectors are extracted by calculating histograms of the block average luminance co-occurrence for the luminance block and the block average colors for the color blocks. In addition, block directional pattern feature vectors are extracted by calculating histograms after performing the directional gradient classification of the luminance. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

NPFAM: Non-Proliferation Fuzzy ARTMAP for Image Classification in Content Based Image Retrieval

  • Anitha, K;Chilambuchelvan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2683-2702
    • /
    • 2015
  • A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.