• Title/Summary/Keyword: Contamination source

Search Result 515, Processing Time 0.035 seconds

Biodegradation of Aromatic Compounds from Soil by Drum Bioreactor System

  • Woo, Seung-Han;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.435-441
    • /
    • 2004
  • A drum bioreactor was used for the treatment of sandy soil contaminated with three kinds of aromatic compounds (phenol, naphthalene, and phenanthrene), and its performance was evaluated in two different operation modes; intermittent and continuous rotation of drum. When the drum bioreactor was operated with one rotation per day, the microbial growth was relatively low, and most of the compounds remaining in soil, except naphthalene of 90 mg/kg dry soil, disappeared mainly due to volatilization. In contrast, when the drum was continuously rotated at 9 rpm (rotation/min), the number of microorganisms was drastically increased and nitrate was consumed for growth as a nitrogen source. Phenol and phenanthrene were removed at rates of 56.7 mg/kg dry soil/day and 3.2 mg/kg dry soil/day, respectively.

Remediation of A DNAPL Contaminated Site Using Containment WALL (차단벽을 이용한 DNAPL 오염지역의 복구)

  • Lee, Kwang-Yeol;Joo, Wan-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.81-85
    • /
    • 1998
  • In the present study, the design method of containment walls is proposed by utilizing an existing site. The selected remedy for the Source Area of Operable Unit 2 at Hill Air Force Base stipulated containment of the pure-phase trichloroethylene contamination. The in-place-mixed wall construction was selected because of the irregular topography, small area of the site, and the requirement to reach depths of greater than 90 feet below ground surface. Bench-scale compatibility studies were performed for the containment wall mix design on three commercial bentonite clays. The samples were subject to screening tests and long-term tests for evaluation of changed soil properties when exposed to the contaminated groundwater.

  • PDF

Preparation of Ultrafine $SnO_2$ Powders by Spray-ICP Technique

  • Kim, Jung-Hwan;Kim, Young-Do;Shin, Kun-Chul;Park, Jong-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.65-70
    • /
    • 1998
  • The Spray-ICP technique uses the ICP(Inductively Coupled Plasma) of ultra-high temperature which is produced by r.f power. The ICP is well-kwown as a clean heat source for the preparation of pure ceramic particles because the ICP is a electrodeless-thermal plasma without contamination. In this study,{{{{ { SnO}_{2 } }}}} particles were sythesized from metal salt solution by Spray-ICP technique. The effects of concentration of solution, collecting location of powders were investicated. The prepared {{{{ { SnO}_{2 } }}}} particles from each concentration of solution had same crystalline phase(tetragonal {{{{ { SnO}_{2 } }}}}) a nd the mean size decreased in proportion to the increase of solution concentration. Each {{{{ { SnO}_{2 } }}}} p owders collector in reactor and electrostatic collector had same crystalline phase and morphologies. The mean size of {{{{ { SnO}_{2 } }}}} p articles prepared by Spray-ICP technique was below 30nm.

  • PDF

In-situ rf treatment of multiwall carbon nanotube with various post techniques for enhanced field emission

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Ji-Hoon;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.859-862
    • /
    • 2003
  • Well-aligned multiwall carbon nanotubes (MWCNTs) were prepared at low temperature of 400 $^{\circ}C$ by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system. The MWCNTs were treated by an external rf plasma source and an ultra-violet laser in order to modify structural defect of carbon nanotube and to ablate possible contamination on carbon nanotube surface. Structural properties of carbon nanotubes were investigated by using a scanning electron microscopy (SEM), Raman spectroscopy, Fourier transformer Infrared spectroscopy (FTIR) and transmission electron microscope (TEM). In addition, the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future. Various post treatments were found to improve the field emission property of carbon nanotubes.

  • PDF

A Study on Water Quality of Springs in the Suburbs of Chunchon City According to Seasons (춘천근교 약수의 계절별 수질에 관한 보건학적 조사연구)

  • 한돈희;박영의;박찬정;전병구;박갑만
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.1
    • /
    • pp.7-16
    • /
    • 1987
  • A study was carried out to determine the adequacy of springs as drinking water in summer and in winter separately. In this study, environmental sanitation, physio-chemical examination, bacteriologic contamination and the content of heavy metal were included. For this study, samples were collected from 8 springs which were located in the suburbs of Chunchon city. The following results were obtained. 1. There was the covering system in 1 out of 8 springs. 6 out of 8 springs showed contaminating source within lorn. 2. In physio-chemical test, six out of 8 springs were found to be unsafe for the legitimate standard of safty water. 3. Bateriologic examination clone during summer showed the evidence of coilform group at 7 out of 8 springs and during winter showed positivity at 3 out of 8 springs. 4. In the study for heavy metal content, all places showed high iron level beyond the standard level of salty water, and 4 places showed high contents of fluorine, mangan and lead.

  • PDF

Potential applications of radioprotective phytochemicals from marine algae

  • Oh, Jae-Young;Fernando, I.P. Shanura;Jeon, You-Jin
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.403-414
    • /
    • 2016
  • The use of ionizing radiation and radioactive elements is becoming increasingly popular with the rapid developments in nuclear technology, radiotherapy, and radio diagnostic methods. However, ionizing radiation can directly or indirectly cause life-threatening complications such as cancer, radiation burns, and impaired immunity. Environmental contamination with radioactive elements and the depletion of ozone layer also contribute to the increased levels of radiation exposure. Radioprotective natural products have particularly received attention for their potential usefulness in counteracting radiation-induced damage because of their reduced toxicity compared with most drugs currently in use. Moreover, radioprotective substances are used as ingredients in cosmetic formulations in order to provide protection against ultraviolet radiation. Over the past few decades, the exploration of marine algae has revealed the presence of radioprotective phytochemicals, such as phlorotannins, polysaccharides, carotenoids and other compounds. With their promising radioprotective effects, marine algae could be a future source for discovering potential radioprotective substances for development as useful in therapeutics.

A Batch Study on BTEX and MTBE Biodegradation by Denitrifiers under Aerobic and Anaerobic Conditions

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.467-470
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification. Because nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study, But finally Biodegradaton was observed for all of the test compounds.

  • PDF

Effect of pH and Iron/Manganese Ion on TiO2 Mediated Photocatalytic Inactivation of Index Microorganisms (LNAPL을 이용한 지중 산소전달 향상: (I) Abiotic Condition)

  • Ha, Jeong-Hyub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.307-311
    • /
    • 2004
  • The objective of this work is to evaluate the hypothesis that a good technique for supplying oxygen to the saturated zone in the presence of light nonaqueous phase liquid (LNAPL) pool contamination at the water table is to pass air through the unsaturated zone above the pool. This hypothesis was evaluated in experimental studies performed using a bench-scale, sand-tank reactor, Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. These experimental results confirmed the hypothesis that an LNAPL pool can serve as a high concentration oxygen source to the oxygen-limited area beneath the pool and, as a result, enhance the in situ biodegradation rate.

Removal of Nitrate in Groundwater by Bipolar ZVI Packed Bed Electrolytic Cell at Field Pilot (지하수중의 질산성질소 제거를 위한 영가철 충진 복극전해조의 현장적용에 관한 연구)

  • Na, So-Jeong;Jeong, Joo-Young;Kim, Han-Ki;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.989-994
    • /
    • 2011
  • Nitrate contamination of groundwater is a common problem throughout intensive agriculture areas (non-point source pollution). Current processes (e.g. ion exchange and membrane separation) for nitrate removal have various disadvantages. The objective of this study was to evaluate electrochemical method such as electroreduction using bipolar ZVI packed bed electrolytic cell to remove nitrate from groundwater at field pilot. In addition ammonia stripping tower continuously removed up to 77.0% of ammonia. Bipolar ZVI packed bed electrolytic cell also removed E.coli. In the field pilot experiment for groundwater in 'I' city (average nitrate 30~35 mg N/L, pH 6.4), maximum 99.9% removal of nitrate was achieved in the applied 600 V.

Electromagnetic Simulation & Electrical.Optical Characteristics by Changing Ferrite Position in Antenna (안테나에서 페라이트 위치 변화에 따른 전자계 시뮬레이션과 전기적.광학적 특성)

  • Lee, Joo-Ho;Yang, Jong-Kyung;Lee, Jong-Chan;Choi, Myung-Hyun;Kim, Byung-Tack;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.816-820
    • /
    • 2008
  • The RF inductive discharge of inductively couples plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technology. Although most practical ICPs operate at 13.56 [MHz] and 2.65 [MHz], the trend to reduce the operating frequency is clearly recognizable from recent ICP developments. In an electrodeless fluorescent lamp, the use of a lower operating frequency simplifies and reduces cost of RF matching systems and RF generators and can eliminate capacitive coupling between the inductor coil and plasma, which could be a strong factor in wall erosion and plasma contamination. In this study, We discussed simulation and experimental results when changing ferrite position in antenna.