• Title/Summary/Keyword: Contaminated Water Release

Search Result 45, Processing Time 0.017 seconds

Utilization of Biosolid for Enhanced Heavy Metal Removal and Biomass Production in Contaminated Soils (중금속 오염 토양 복원 및 바이오메스 생산량 증대를 위한 biosolid 활용)

  • Kim, Kwon-Rae;Naidu, Ravi;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.558-564
    • /
    • 2010
  • Cleaning up the landfill soil by phytoremediation in association with biomass production and utilization of biosolid as a soil amendment will be an attractive green technology. In order to examine this integrated green technology, in the current study of pot trial, heavy metal removal rate and biomass production were determined following cultivation of three different plant species in the landfill soil incorporated with biosolid at two different levels (25 ton $ha^{-1}$ and 50 ton $ha^{-1}$). Among the three plant species including Indian mustard (Brassica juncea), giant sunflower (Helianthus giganteus. L), and giant cane (Arundo donax. L), sunflower appeared to produce the largest biomass yield (19.2 ton $ha^{-1}$) and the produced amounts were magnificently increased with biosolid treatment compared to the control (no biosoild treatment). The increased production associated with biosolid treatment was common for other plant species and this was attributed to the biosolid originated nutrients as well as the improved soil physical properties due to the organic matter from biosolid. The elevated heavy metals in soil which was originated from the incorporated biosolid were Cu and Zn. Based on the phytoavailable amount of heavy metals from biosolid, the removed amount by plant shoots were 95% and 165% for Cu and Zn, respectively, when sunflower was grown. This indicated that mitigation of heavy metal accumulation in soils achieved by the removal of metal through sunflower cultivation enables the successive treatment of biosolid to soils. Moreover, sunflower showed heavy metal stabilization ability in the rhizosphere resulting in alleviation of metal release to ground water.

Rapid Screening of Salmonella spp. Using PBM BioSignTM Salmonella Test and Evaluation of the PBMS Test

  • Lim, J.Y.;Kwon, N.H.;Kim, J.M.;Jung, W.K.;Park, K.T.;Hong, S.K.;Park, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1746-1750
    • /
    • 2004
  • The PBM ${BioSign}^{TM}$ Salmonella (PBMS) test kit based on an mmunochromatographic method was evaluated for the screening of Salmonella spp. in pure cultures, and 80, 15, and 10 artificially and naturally contaminated, and negative controlled food samples, respectively. The PBMS test involves presumptive qualitative procedures, detecting the presence of Salmonella spp. in foods within 26 h total testing period and allowing the user to release negative products 70 h earlier than the conventional methods. The PBMS test using Buffered Peptone Water and Rappaport-Vassiliadis broth was evaluated for 10 different food types for various Salmonella spp. It showed detection limits of 1 to 25 colony forming units (CFU)/25 g. No cross-reaction was observed, particularly to other gramnegative bacteria. These results indicate the PBMS test is a rapid and inexpensive procedure for the screening of Salmonella spp. present at low concentrations (1 to 25 CFU/25 g) in foods.

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.

Antibacterial Mechanism and Salad Washing Effect of Bitter Orange Extract Against Salmonella Typhimurium (광귤 추출물의 Salmonella Typhimurium에 대한 항균 메커니즘 및 샐러드 세척 효과)

  • Yoon-Mi Ji;Ji-Yun Bae;Chung-Hwan Kim;Se-Wook OH
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.273-280
    • /
    • 2024
  • In this study, the antibacterial activity and mechanisms of bitter orange extract, a natural antibacterial agent, were investigated, with a focus on its potential application in washing water for controlling Salmonella Typhimurium contamination of salad, a ready-to-eat food. The minimum inhibitory concentration (MIC) of bitter orange extract against S. Typhimurium was determined using the broth dilution method. Subsequently, S. Typhimurium was exposed to various concentrations of bitter orange extract (1/16 MIC-2 MIC) and growth curves were measured. Following treatment with bitter orange extract, we investigated its antibacterial mechanism by measuring intracellular reactive oxygen species (ROS) levels, alterations in membrane potential and integrity, and nucleic acid leakage in S. Typhimurium. Additionally, salads artificially contaminated with S. Typhimurium were treated with different concentrations of bitter orange extract using the dipping method for various durations to assess the reduction effect. The MIC of bitter orange extract against S. Typhimurium was 195.313 mg/L, and bacterial growth was completely inhibited at a concentration of 1 MIC. Furthermore, an increase in bitter orange extract concentration correlated with elevated intracellular ROS levels, membrane potential disruption, membrane damage, and nucleic acid release. Importantly, salads treated with bitter orange extract exhibited a significant reduction in S. Typhimurium counts compared to the control, and prolonged treatment times resulted in further reductions in bacterial counts. Bitter orange extract was more effective than sodium hypochlorite and can be used as a safer salad wash. These findings indicate the potential treatment of salads to prevent foodborne illnesses.

Monitoring of Radioactivity and Heavy Metal Contamination of Dried Processed Fishery Products (건조 수산가공식품의 방사능 및 중금속 오염도 조사)

  • Lee, Ji-Yeon;Jeong, Jin-A;Jeon, Jong-Sup;Lee, Seong-Bong;Kwon, Hye-Jung;Kim, Jeong-Eun;Lee, Byoung-Hoon;Mo, A-Ra;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.248-256
    • /
    • 2021
  • A total of 120 samples corresponding to 12 categories of dried processed fishery products distributed in Gyeonggi-do were examined for radioactivity contamination (131I, 134Cs, 137Cs) and heavy metals (lead, cadmium, arsenic, and mercury). One natural radioactive material, 40K, was detected in all products, while the artificial radioactive materials 131I, 134Cs and 137Cs were not detected at above MDA (minimum detectable activity) values. The detection ranges of heavy metals converted by biological basis were found as follows: Pb (N.D.-0.332 mg/kg), Cd (N.D.-2.941 mg/kg), As (0.371-15.007 mg/kg), Hg (0.0005-0.0621 mg/kg). Heavy metals were detected within standard levels when there was an acceptable standard, but the arsenic content was high in most products, although none of the products had a permitted level of arsenic. In the case of dried processed fishery products, there are products that are consumed by restoring moisture to its original state, but there are also many products that are consumed directly in the dry state, so it will be necessary to set permitted levels for heavy metals considering this situation in the future. In addition, Japan has decided to release contaminated water from the Fukushima nuclear power plant into the ocean, so there is high public concern about radioactivity contamination of food, including fishery products. Therefore, continuous monitoring of various food items will be necessary to ease consumers' anxiety.