• Title/Summary/Keyword: Contaminated Process

Search Result 694, Processing Time 0.021 seconds

Enhanced Transport and Risk of a Highly Nonpolar Pollutant in the Presence of LNAPL in Soil-groundwater System: In Case of p-xylene and benz[a]anthracene (LNAPL에 의한 소수성 유기오염물질의 지하환경 내 이동성 변화가 위해성 증가에 미치는 영향: p-xylene과 benz[a]anthracene의 경우)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.25-31
    • /
    • 2007
  • Characterizing the risk posed by a mixture of chemicals is a challenging task due to the chemical interactions of individual components that may affect their physical behavior and hence alter their exposure to receptors. In this study, cell tests that represent subsurface environment were carried out using benz[a]anthracene (BaA) and p-xylene focusing on phasetransforming interaction to verify increased mobility and risk of highly sorbed pollutants in the presence of less sorbed, mobile liquid pollutants. A transport model was also developed to interpret results and to simulate the same process on a field scale. The experimental results showed that BaA had far greater mobility in the presence of p-xylene than in the absence of that. The main transport mechanisms in the vadose zone were by dissolution to p-xylene or water. The transport model utilizing Defined Time Steps (DTS) was developed and tested with the experimental results. The predicted and observed values showed similar tendency, but the more work is needed in the future study for more precise modeling. The field-scale simulation results showed that transport of BaA to groundwater table was significantly faster in the presence of NAPL, and the oral carcinogenic risk of BaA calculated with the concentration in groundwater was 15${\sim}$87 times larger when mixed with NAPL than when solely contaminated. Since transport rate of PAHs is very slow in the subsurface without NAPL and no degradation of PAHs was considered in this simulation during the transport, the increase of risk in the presence of NAPL is expected to be greater for the actual contaminated site.

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

Survey for contamination and study for reduction of ochratoxin A and aflatoxin in red pepper (고추 중 오크라톡신 A와 아플라톡신의 오염도 조사 및 저감화방안 연구)

  • Kim, Dong-Ho;Jang, Han-Sub;Kim, Yeong-Min;Ahn, Jong-Sung
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Aflatoxin (AF) and Ochratoxin A (OTA) are carcinogenic and possible carcinogenic mycotoxins respectively produced by Aspergillus spp or Penicillium spp. The study for contamination survey and proposal for reduction of mycotoxin in red pepper were carried out. 192 samples were collected at such various stages and markets as pre/post-harvest stages, internet shopping mall /super-market and small stakeholder mill/geographically indicated company. As only 2 samples were positive for aflatoxin, so contamination rate was 1.04%. In the meanwhile, contamination rate for ochratoxin A was 21.88% and a various amount of OTA was detected in 42 positive samples. 6 samples were found to be contaminated at higher level than $5\;{\mu}gkg^{-1}$ for ochratoxin A, which was established recently as a maximum permissible limit in korea. There was no difference in degree of contamination with regard to cultivation type because any mycotoxin was not found at all in both organically and conventionally grown red pepper. But, there was statistically significant difference in the process of manufacturing. Finished products were OTA-contaminated at a level of $2.32\;{\pm}\;6.54\;{\mu}gkg^{-1}$(mean ${\pm}$ SD), even though OTA was not detected in deep frozen red peppers right after long term storage. And contamination for OTA was a level of $0.33\;{\pm}\;0.91\;{\mu}gkg^{-1}$(mean ${\pm}$ SD) in red paprika powder after uv sterilization, while the contamination for OTA was $2.78\;{\pm}\;4.49\;{\mu}kg^{-1}$(mean ${\pm}$ SD) in non-uv sterilized powder. In addition, our investigation shows that higher OTA contamination occurred in some of famous brand products sold in super-market and domestic products than products collected through on-line shopping or from small stakeholder mills and imported products respectively, however, difference was not statistically significant.

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.

Study for the Stabilization of Arsenic in the Farmland Soil by Using Steel Making Slag and Limestone (제강슬래그와 석회석을 이용한 비소오염 농경지 토양 안정화 연구)

  • Lee, Min-Hee;Jeon, Ji-Hye
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The stabilization process using limestone ($CaCO_3$) and steel making slag as the immobilization amendments was investigated for As contaminated farmland soils around Chonam abandoned mine, Korea. Batch and continuous column experiments were performed to quantify As-immobilization efficiency in soil and the analyses using XRD and SEM/EDS for secondary minerals precipitated in soil were also conducted to understand the mechanism of Asimmobilization by the amendments. For the batch experiment, with 3% of limestone and steel making slag, leaching concentration of As from the contaminated soil decreased by 62% and 52% respectively, compared to that without the amendment. When the mixed amendment (2% of limestone and 1% of steel making slag) was used, As concentration in the effluent solution decreased by 72%, showing that the mixed of limestone and steel making slag has a great capability to immobilize As in the soil. For the continuous column experiments without the amendment, As concentration from the effluent of the column ranged from 50 to $80\;{\mu}g/L$. However, with 2% limestone and 1% steel making slag, more than 80% diminution of As leaching concentration occurred within 1 year and maintained mostly below $10\;{\mu}g/L$. Results from XRD and SEM/EDS analysis for the secondary minerals created from the reaction of the amendments with $As^{+3}$ (arsenite) investigated that portlandite ($Ca(OH)_2$), calcium-arsenite (Ca-As-O) and calcite ($CaCO_3$) were main secondary minerals and the distinct As peaks in the EDS spectra of the secondary minerals can be observed. These findings suggest that the co-precipitation might be the major mechanisms to immobilize As in the soil medium with limestone and steel making slag.

An Epidemiologic Investigation of Enteropathogenic Escherichia Coli (EPEC) Outbreak in Seongju-gun, Gyeongbuk, 2004 (2004년 경상북도 성주군에서 발생한 장병원성대장균의 유행에 관한 역학조사)

  • Baik, Dalh-Yeon;Yeom, Seok-Hyeon;Lee, Kwan;Lim, Hyun-Sul
    • Journal of agricultural medicine and community health
    • /
    • v.30 no.1
    • /
    • pp.39-50
    • /
    • 2005
  • Objectives: This investigation was carried out to explore the source and the mode of transmission of the diarrhea outbreak in Seongju-gun, Gyeongbuk, 2004 Methods: The authors conducted a questionnaire survey among the 275 persons (students, staff members and cooks) who ingested the possibly contaminated foods. We also investigated the drinking water and the dining facility, and we reviewed the process of cooking the salad, which was the presumed cause of the Enteropathogenic Escherichia coli(EPEC) diarrhea. The confirmed EPEC diarrheal case was defined as culture positive for EPEC, and the suspicious case was defined as diarrheal case with symptoms more than one of fever, vomiting and tenesmus. Results: The attack rate of EPEC diarrhea was 36.7%, and there were 8 confirmed cases. The possibility of the drinking being a source of the infection was very low, for chlorine was detected in all the drinking water via reviewing the past records and using a portable detector. The foods that were significantly associated with diarrhea were found. The relative risk (RR) for the lunch served Jul 7 was 4.12 (95% CI: 1.39-12.20). Among the non-boiled foods that were finally served, the RR for the salad was 1.66 (95% CI: 1.07-2.57). The cause of this outbreak was presumed to be the contaminated foods that were prepared by cooks using rubber glove with holes, and especially the salad and foods that were served sans boiling on Jul 7. Conclusions: Though this EPEC infection was not so clinically important, if a larger outbreak occurred, it might severely affect the public health. It is recommended to develop the more safe methods for cooking foods, and to strengthen the sanitary processing foods.

  • PDF

A Study of Heavy Metal-Contaminated Soil Remediation with a EDTA and Boric acid Composite(I): Pb (EDTA와 붕산 혼합용출제를 이용한 중금속으로 오염된 토양의 처리에 관한 연구(I): 납)

  • Lee Jong-Yeol;Kim Yong-Soo;Kwon Young-Ho;Kong Sung-Ho;Park Shin-Young;Lee Chang-Hwan;Sung Hae-Ryun
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2004
  • To choose a organic acid and in-organic acid composite which is the most effective in soil-flushing process cleaning lead-contaminated sites, lead removal rates were investigated in the experiments with some organic acids; 0.01M of EDTA showed the highest lead-extraction rate ($69.4\%$) compared to the other organic acids. Furthermore, the lead removal rates were measured with 0.01M of EDIA and 0.1M of in-organic acid ; a EDTA and boric acid composite showed the highest lead-extraction rate ($68.8\%$) at pH5 compared to the other composites. As the concentration of boric acid was increased from 0.1M to 0.4M in a 0.01M of EDTA and boric acid composite, lead removal rate was decreased from $68\%\;to\;45\%$. But as the concentration of EDTA was increased from 0.01M to 0.04M in a EDTA and 0.1M of boric acid composite, permeability was decreased from $6.98{\times}10^{-4}cm/sec$ (0.01M of EDTA) to $5.99{\times}10^{-4}cm/sec$ (0.04M of EDTA). However, permeability was increased from $4.41{\times}10^{-4}cm/sec$ (0.03M of EDTA) to $6.26{\times}10^{-4}cm/sec$ (0.03M of EDTA and 0.1M of boric acid composite). indicating EDTA could increase lead dissolution/extraction rate and decrease permeability. In this system, lead remediation rate is the function of lead dissolution rate from soils and permeability of the composite into soils, and the optimized [EDTA]/[Boric acid] ratio is [0.01M]/[0.1M].

Effect of Milling on Reduction of Fusarium Mycotoxins in Barley (보리 도정이 Fusarium 곰팡이독소 저감에 미치는 효과)

  • Seul Gi Baek;Mi-Jeong Lee;Ju-Young Nah;Soo Bin Yim;Jung-Hye Choi;Jang Nam Choi;Ja Yeong Jang;Jung-Wook Yang;Theresa Lee
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.384-389
    • /
    • 2023
  • Milling can affect the distribution of mycotoxins in small grains. To investigate the effects on barley, seven hulled barley and three naked barley samples naturally contaminated with trichothecenes and zearalenone were obtained and milled at commonly used rates. Both barleys were simultaneously contaminated with deoxynivalenol and its acetyl derivatives (98.1-2,197.8 ㎍/kg), nivalenol and its acetyl derivative (468.5-3,965.1 ㎍/kg), and zearalenone (4.1-274.2 ㎍/kg). Milling hulled barleys at a rate of 67% reduced the mycotoxins in the grain by 90.9% for deoxynivalenol, 87.7% for nivalenol, and 93.2% for zearalenone. The reduction in naked barleys (milled at a rate of 70%) was slightly lower than in hulled barleys, with 88.6% for deoxynivalenol, 80.2% for nivalenol, and 70.1% for zearalenone. In both barleys, the acetyl derivatives of deoxynivalenol and nivalenol were reduced by 100%. However, barley bran had significantly higher mycotoxin concentrations than the pre-milled grains: bran from hulled barley had a 357% increase in deoxynivalenol, 252% increase in nivalenol, and 169% increase in zearalenone. Similarly, bran from naked barley had a 337% increase in deoxynivalenol, 239% increase in nivalenol, and 554% increase in zearalenone. These results show that mycotoxins present in the outer layers of barley grain can be effectively removed through the milling process. As milling redistributes mycotoxins from the grain into the bran, however, it shows that advance monitoring of barley bran is recommended when using barley bran for human or animal consumption.

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.