• Title/Summary/Keyword: Contaminated Process

Search Result 688, Processing Time 0.028 seconds

Applicability of Washing Techniques Coupled with High-Pressure Air Jet for Petroleum-contaminated Soils (고압공기분사를 이용한 유류오염토양 세척기법의 적용성 연구)

  • Choi, Sang-Il;Kim, Kang-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.61-68
    • /
    • 2006
  • Soil washing techniques coupled with high pressure air jet were applied for diesel-contaminated soils sampled by an underground oil reservoir of which the initial total petroleum hydrocarbon (TPH) ($2,828{\pm}206\;mg/kg$) exceeded 5 times of current standard level (500 mg/kg) regulated by the Soil-Environment Conservation Law. Through several tests, we found that the position of impeller has a critical impact for washing efficiencies. The highest washing efficiency was obtained at an oblique angle (30 degree) for the impeller and optimized mixing speed (300 rpm) that could have high shearing forces. Considered economical and feasible aspects, the optimum mixing time was 10 min. Rate constants of TPH removal derived from the first-order equation were not linearly increased as mixing speed increased, indicating that mechanical mixing has some limits to enhance the washing efficiencies. Application of high-pressure air jet in washing process increased the washing efficiency. This increase might be caused by the fact that the surface of micro-air bubbles strongly attached hydrophobic matters of soil particles. As the pressure of air jet increased, the separation efficiencies of TPH-contaminated soil particles increased. In the combined process of high-pressure air jet and mixing by impeller, the optimum mixing speed and air flow-rate were determined to be 60 rpm and $2\;kg/cm^2$, respectively. Consequently, the washing technique coupled with high-pressure air jet could be considered as a feasible application for remediating petroleum-contaminated soils.

Studies on the Effect of Seed Koji for the Soysauce Qualities (종국(種麴)의 종류(種類)가 간장의 품질(品質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee, Suk-Kun;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.155-161
    • /
    • 1976
  • The say sauce koji where made use of different kinds of seed koji were used to brewing of soysauce. The pure, complex and bacteria contaminated seed koji were used in this experiment, And the euzyme activity, Micrflora, chemical composition and TN-solubility ratio of each soysauce mash during the fermentation periods were measured respectively. The results obtained were as follows. 1. The neutral and alkali protease activity of each soysauce mash were decreassed in the process of fermentation period. In this case the activitities of protease in the bacteria contaminated koji were remarkably decreased. 2. The microflora in one ml of soysauce mash showed the tendency of increase in process of fermentation period. The increase in bacteria contaminated seed koji group was remarkable. 3. The content of total nitrogen, amino-N and ammonia-N in soysauce during the course of fermentation were increase. And alcohol, reducing sugar and pure extract contents in soysauce were also increased in the former stage of fermentation, but in the latter stage of fermentation decreased. 4. Though the content of ammonia-N in bacteria contaminated seed koji group was high, the pH value was low in comparison with the others. 5. Pure seed koji group were shown the most effective in the result of total nitrogen solubility ratio and sensual test, while the bacteria contaminated seed koji group was the worst.

  • PDF

Sorption and Leaching Characteristics of Diesel-Contaminated Soils Treated by Cold Mix Asphalt (Cold Mix Asphalt로 처리한 디젤 오염 토양의 흡착 및 용출특성)

  • Seo Jin-Kwon;Hwang Inseong;Park Joo-Yang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2004
  • A cold mix asphalt (CMA) treatment process was proposed as a tool to recycle soils contaminated with petroleum hydrocarbons. Experimental studies were conducted to characterize performances of the CMA process in treating soils contaminated with diesel or diesel compounds. From the screening experiments, it was found that performances of five types of asphalt emulsions that contained a cationic or an anionic or a nonionic surfactant were not substantially different. In consideration of higher affinity for soils and higher sorption coefficients obtained, an emulsion containing Lauryl Dimethyl Benzyl Ammonium Chloride (LDBAC) was selected as a promising asphalt emulsion for treating diesel-contaminated soils. When the asphalt emulsion LDBAC was applied to treat three compounds that originated from diesel, the removal efficiencies obtained in the order of decreasing efficiencies were as follows: docosane > pentadecane > undecane. Leaching experiments on the specimen formulated by the emulsion LDBAC found that the selected treatment method could treat soils with diesel concentrations as high as 10,000 mg/kg. Leaching of the diesel from the specimen was controlled by diffusion for the first four days and then leaching rate diminished substantially. The latter behavior was characterized as depletion, which represents that the contaminant released amounts to more than $50\%$ of the total amount of the contaminant that can be leached. The amounts of three diesel compounds leached from the specimen in the order of decreasing amount were undecane, pentadecane, and docosane. The curing of the soil contaminated with pentadecane was relatively slow.

Transformation Characteristics of Chlorinated Aliphatic Hydrocarbon (CAH) Mixtures in a Two-Stage Column: 1st Chemical Column Packed with Zinc Natural Ore and 2nd Biological Column Stimulated with Propane-Oxidizing Microorganisms (아연 광석과 프로판산화 미생물을 이용한 이단 고정상 반응기에서의 염소계 지방족 탄화수소 혼합물 분해 특성)

  • Son, Bong-han;Kim, Nam-hee;Hong, Kwang-pyo;Yun, Jun-ki;Lee, Chae-young;Kwon, Soo-youl;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.723-730
    • /
    • 2007
  • This study was conducted to develop a combined method for remediating a Chlorinated Aliphatic Hydrocarbons (CAHs) mixtures-contaminated aquifer. The process is consist of two processes. A chemical process (1st) using natural zinc ores for reducing higher concentrations of CAH mixtures to the level at which biological process is feasible; and A biological process (2nd) using aerobic cometabolism for treating lower concentration of CAH mixtures (less than 1 mg/L). Natural zinc ore showed relatively high transformation capacity, average dehalogenation percentage, and the best economic efficiency in previously our study. To evaluate the feasibility of the process, we operated two columns in series (that is, chemical and biological columns). In the first column filled with natural zinc ore and sand, CAH mixtures were effectively transformed with more than 95% efficiency, the efficiency depends on the Empty Bed Contact Time (EBCT) and the mass of zinc ore packed. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) analysis were performed to make sure whether natural zinc ore played an key role in the dechlorination of the CAH mixtures. The characteristics of zinc metal surface changed after exposure to CAHs due to oxidation of $Zn^0$ to $Zn^{2+}$. In the biological column injecting propane, DO and effluent of the chemical column, only 1,1,1-TCA was cometabolically transformed. Consequently, the combined process would be effective to remediate an aquifer contaminated with high concentrations of CAH mixtures.

Feasibility Study on Soil Flushing for Railway Soil Contaminated with Lubricant Oil and Zinc (토양세정 기술을 활용한 윤활유와 아연 복합오염 철도토양의 정화 연구)

  • Park, Sung-Woo;Cho, Jung-Min;Lee, Jae-Young;Park, Joon-Kyu;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • The feasibility study of soil flushing was investigated to remediate lubricant oil and zinc contaminated railway soil. In this study, mixed washing agents of surfactant and inorganic acid/base were used for the simultaneous removal. The mixed washing agent of non-ionic surfactant and HCl removed 15% of the lubricant oil and 40% of zinc, respectively. Alkaline-enhanced soil washing process increased the removal of lubricant oil up to 40%. This is because alkaline solution reduced the interfacial tension between water phase and lubricant oil phase due to the soap formation reaction. To simulate in-situ soil flushing for the remediation of railroad-related contamination, two dimensional soil flushing was carried out based on the results of batch soil washing. In the soil flushing, the removal efficiencies of lubricant oil and zinc were 34% and 16%, respectively. Even though the removal efficiency was low, the mixed washing agent can remove metal and lubricant oil simultaneously.

A Study on the Pb-contaminated Soil Remediation by Organic Acid Washing (유기산을 이용한 납 오염토양의 복원에 관한 연구)

  • 정의덕
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.437-441
    • /
    • 2000
  • A study on the removal of Pb ion from Pb-contaminated soil was carried out using ex-site extraction process. Tartaric acid (TA) and iminodiacetic acid sodium salt(IDA) as a washing agent were evaluated as a function of concentration reaction time mixing ratio of washing agent and recycling of washing agent. TA showed a better extraction performance than IDA. The optimum washing condition of TA and IDA were in the ratio of 1:15 and 1:20 between soil and acid solution during 1 hr reaction. The total concentrations of Pb ion by TA and IDA at three repeated extraction were 368.8 ppm and 267.5 ppm respectively. The recovery of Pb ion from washing solution was achieved by adding calcium hydroxide and sodium sulfide form the precipitation of lead hydroxide and lead sulfide and optimum amounts of sodium sulfide and calcium hydroxide were 7 g/$\ell$ for the TA washing solution and 4 g/$\ell$, 5g/$\ell$ for the IDA washing solution respectively. The efficiency of recycle for TA and IDA washing solution were 78.8% , 95.1%, and 89.2%, 96.6% at third extractions under $Na_2S$ and $Ca(OH)_2$, respectively.

  • PDF

Fundamental study on volume reduction of heavy metal-contaminated soil by magnetic separation

  • Konishi, Yusuke;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Large-scale civil engineering works discharge a large amount of soil suspension contaminated with natural heavy metals. Most of the heavy metal ions due to industrial activities and minings are accumulated in the soils and the sediments of lakes and inner bays through the rivers. It is necessary to remove heavy metals from the soils and the sediments, because some of these heavy metals, such as arsenic and cadmium, have significant biological effects even in small amounts. This study proposes a new volume reduction method of the contaminated soils and sediments by superconducting magnetic separation. Our process can remove the specific minute minerals selectively, which adsorbs heavy metals depending on pH. As a fundamental study, the adsorption behaviors of arsenic and cadmium on minute minerals as a function of pH were investigated, and the adsorption mechanism was discussed based on the crystal structure and pH dependence of surface potential in each minute minerals.

Stabilization of Heavy Metal Contaminated Soil Amended with Waste Cow Bone (중금속으로 오염된 토양 정화에 있어 폐 소뼈 첨가제의 영향)

  • Lim, Jung-Hyun;Cui, Ming-Can;Moon, Deok-Hyun;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.255-260
    • /
    • 2010
  • A stabilization/solidification (S/S) process for lead (Pb) contaminated soils was evaluated using waste cow bone containing apatite like compounds. Soil samples obtained form firing range were treated with waste cow bone. The effectiveness of stabilization was evaluated based on the Korean Standard Leaching Test (KSLT) and soil pH. The leached concentration reduced with increased in dose of waste cow bone. Overall, the KSLT results showed that Pb concentration in soils are significantly affected by amount of waste cow bone. When soil amended with 20 % of waste cow bone, less than 0.1 mg/kg was leached, and soil pH was increased from 6.5 to 8.4. Same results were obtained when finer waste cow bone was applied. The reachable concentration of Pb in soil showed in inversely proportional to solid/liquid ratio. Aging periods indicate improving mix design was applied. Relatively high lead concentrations was observed at the first 1 days, however leaching profile are reduced significantly over time for all mix designs.

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

Ex-situ Remediation of a Contaminated Soil of Fe Abandoned Mine using Organic Acid Extractants (유기산 추출에 의한 철 폐광산 오염토양의 복원)

  • 정의덕;강신원;백우현
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • A study on the remediation of heavily for ion contaminated soils from abandoned iron mine was carried out, using ex-situ extraction process. Also, oxalic acid as a complex agent was evaluated as a function of concentration, reaction time and mixing ratio of washing agent in order to evaluate Fe removability of the soil contaminated from the abandoned iron mine. Oxalic acid showed a better extraction performance than 0.1N-HCl, i.e., the concentrations of Fe ion extracted from the abandoned mine for the former at uncontrolled pH and the latter were 1,750 ppm and 1,079 ppm, respectively. The optimum washing condition of oxalic acid was in the ratio of 1:5 and 1:10 between soil and acid solution during l hr reaction. The total concentrations of Fe ion by oxalic acid and EDTA at three repeated extraction, were 4,554 ppm and 864 ppm, respectively. The recovery of Fe ions from washing solution was achieved, forming hydroxide precipitation and metal sulfide under excess of calcium hydroxide and sodium sulfide. In addition, the amounted of sodium sulfide and calcium hydroxide for the optimal revovery of Fe were 15g/$\ell$ and 5g/$\ell$ from the oxalic acid complexes, respectively.

  • PDF