• Title/Summary/Keyword: Containment system

Search Result 382, Processing Time 0.022 seconds

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

A Study on the Effect of Containment Filtered Venting System to Off-site under Severe Accident (중대사고시 격납건물여과배기계통(CFVS)적용으로 인한 사고영향과 결과 고찰)

  • Jeon, Ju Young;Kwon, Tae-Eun;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.244-251
    • /
    • 2015
  • The containment filtered venting system reduces the range of the contamination area around the nuclear power plant by strengthening the integrity of the containment building. In this study, the probabilistic assessment code MACCS2 was used to assess the effect of the CFVS to off-site. The accident source term was selected from a Probabilistic Safety Analysis report of SHINKORI 1&2 Nuclear Power Plant. The three source term categories from 19 STC were chosen to evaluate the effective dose and thyroid dose of residents around the power plant and the dose with CFVS and without CFVS were compared. The dose was calculated according to the distance from the nuclear power plant, so the damage scale based on the distance that exceeds the IAEA criteria for effective dose (100 mSv per 7 days) and thyroid dose (50 mSv per 7 days) were compared. The effective dose reduction rates of the STC-3, STC-4, STC-6 were about 95-99% in the whole range (0~35 km), 96-98% for the thyroid dose. There are similar results between effective dose and thyroid dose. After applying the CFVS, the damage scale that exceeds the effective dose criteria was about 1 km (mean). Especially, the STC-4 damage scale was decreased from 26 km (mean) to 1.2 km (mean) significantly. The damage scale that exceed the thyroid dose criteria was decreased to 2~3 km (mean). The STC-4 damage scale was also decreased significantly as compared to STC-3, STC-6 in terms of effective dose.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

PI-based Containment Control for Multi-agent Systems with Input Saturations (입력 포화가 존재하는 다중 에이전트 시스템을 위한 PI기반의 봉쇄제어)

  • Lim, Young-Hun;Tack, Han-Ho;Kang, Shin-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.102-107
    • /
    • 2021
  • This paper discusses the containment control problem for multi-agent systems with input saturations. The goal of the containment control is to obtain swarming behavior by driving follower agents into the convex hull which is spanned by multiple leader agents. This paper considers multiple leader agents moving at the same constant speed. Then, to solve the containment problem for moving leaders, we propose a PI-based distributed control algorithm. We next analyze the convergence of follower agents to the desired positions. Specifically, we apply the integral-type Lyapunov function to take into account the saturation nonlinearity. Then, based on Lasalle's Invariance Principle, we show that the asymptotic convergence of error states to zero for any positive constant gains. Finally, numerical examples with the static and moving leaders are provided to validate the theoretical results.

Feasibility study of β-ray detection system for small leakage from reactor coolant system

  • Jang, Jaeyeong;Jeong, Jae Young;Park, Junesic;Cho, Young-Sik;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2748-2754
    • /
    • 2022
  • Because existing reactant coolant system (RCS) leakage detection mechanisms are insensitive to small leaks, a real-time, direct detection system with a detection threshold below 0.5 gpm·hr-1 was studied. A beta-ray detection system using a silicon detector with good energy resolution for beta rays and a low gamma-ray response was proposed. The detection performance in the leakage condition was evaluated through experiments and simulations. The concentration of 16N in the coolant corresponding to a coolant leakage of 0.5 gpm was calculated using the analytic method and ORIGEN-ARP. Based on the concentration of 16N and the measurement of the silicon detector with 90Sr/90Y, the beta-ray count rate was estimated using MCNPX. To evaluate the effect of gamma rays inside the containment building, the signal-to-noise ratio (SNR) was calculated. To evaluate the count rate ratio, the radiation field inside the containment building was simulated using MCNPX, and response evaluation experiments were performed using beta and gamma rays on the silicon detector. The expected beta-ray count rate at 0.5 gpm leakage was 7.26 × 105 counts/sec, and the signal-to-background count rate ratio exceeded 88 for a transport time of 10 s, demonstrating its suitability for operation inside a reactor containment building.

Numerical Investigation on Experiment for Passive Containment Cooling System (피동 원자로건물 냉각계통 실험에 관한 수치적 연구)

  • Ha, Hui Un;Suh, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.96-104
    • /
    • 2020
  • The numerical simulations were conducted to investigate the thermal-fluid phenomena occurred inside the experimental apparatus during a PCCS, used to remove heat released in accidents from a containment of light water nuclear power plant, operation. Numerical simulations of the flow and heat transfer caused by wall condensation inside the containment simulation vessel (CSV), which equipped with 18 vertical heat exchanger tubes, were conducted using the commercial computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the wall condensation model were used for turbulence closure and wall condensation, respectively. The simulation using the actual size of the apparatus. However, rather than simulating the whole experimental apparatus in consideration of the experimental cases, calculation resources, and calculation time, the simulation model was prepared only in CSV. Selective simulation was conducted to verify the effects of non-condensable gas(NC gas) concentration, CSV internal pressure, and wall sub-cooling conditions. First, as a result of the internal flow of CSV, it was observed that downward flow due to condensation occurred surface of the vertical tube and upward flow occurred in the distant place. Natural convection occurred actively around the heat exchanger tube. Due to this rising and falling internal flow, natural circulation occurred actively around the heat exchanger tubes. Next, in order to check the performance of built-in condensation model using according to the non-condensable gas concentration, CSV internal flow and wall sub-cooling, the heat flux values were compared with the experimental results. On average, the results were underestimated with and error of about 25%. In addition, the influence of CSV internal pressure and wall sub-cooling was small, but when the condensate was highly generated due to the low non-condensable gas concentration, the error was large compared to the experimental values. This is considered to be due to the nature of the condensation model of the CFX code. However, in spite of the limitations of CFD, it is valid to use the built-in condensation model of CFD for PCCS performance prediction from a conservative perspective.

Study of an improved and novel venturi scrubber configuration for removal of radioactive gases from NPP containment air during severe accident

  • Farooq, Mujahid;Ahmed, Ammar;Qureshi, Kamran;Shah, Ajmal;Waheed, Khalid;Siddique, Waseem;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3310-3316
    • /
    • 2022
  • Owing to the rising concerns about the safety of nuclear power plants (NPP), it is essential to study the venturi scrubber in detail, which is a key component of the filtered containment venting system (FCVS). FCVS alleviates the pressurein containment byfiltering and venting out the contaminated air. Themain objective of this research was to perform a CFD investigation of different configurations of a circular, non-submerged, self-priming venturi scrubber to estimate and improve the performance in the removal of elemental iodine from the air. For benchmarking, a mass transfer model which is based on two-film theory was selected and validated by experimental data where an alkaline solution was considered as the scrubbing solution. This mass transfer model was modified and implemented on a unique formation of two self-priming venturi scrubbers in series. Euler-Euler method was used for two-phase modeling and the realizable K-ε model was used for capturing the turbulence. The obtained results showed a remarkable improvement in the removal of radioactive iodine from the air using a series combination of venturi scrubbers. The removal efficiency was improved at every single data point.

Containment Control for Second-order Multi-agent Systems with Input Saturations (입력 포화를 고려한 2차 다중 에이전트 시스템을 위한 봉쇄제어)

  • Young-Hun, Lim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.109-116
    • /
    • 2023
  • In this paper, we study the containment control problem for second-order multi-agent systems, which consists of multiple leaders and followers. The goal is to drive the followers toward the convex hull spanned by the leaders. Thus, the swarm behavior can be obtained by controlling the entire group by the leaders. This paper considers the leaders move at a constant speed and the followers have input saturations. Moreover, we assume that the followers can exchange information with neighbors, and only relative state information is available. Under these assumptions, we propose the Proportional-Integral based distributed control algorithm to solve the containment control problem with moving leaders. Moreover, based on Lasalle's invariance principle, the conditions for the control gains that guarantee the convergence of the followers to the convex hull spanned by the leaders are investigated, and it was shown that it can be designed only using the system parameter. Finally, the simulations are conducted to validate the theoretical result.

Turbine Case Containment Capability Evaluation Using Finite Element Analysis (유한요소해석을 이용한 터빈 케이스의 컨테인먼트 성능 평가)

  • Jun-woo Baek;Sang-woo Kim;Soo-yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, we used finite element analysis to conduct a containment capability evaluation of a turbine case. When analyzing the impact behavior of structures subjected to impact loads, it is important to consider the strain rate, as it affects the increase in flow stress. Therefore, we applied three material models (Cowper-Symonds, Johnson-Cook, and Modified Johnson-Cook) for the impact analysis. To validate these material models, we performed an impact test on an aluminum 6061 plate. By comparing and analyzing the experimental and analytical results, we determined that the Modified Johnson-Cook material model exhibited the least error. As a result, we applied this material model to evaluate the containment capability of the turbine case. This evaluation involved determining the occurrence of penetration, as well as the stress and strain induced at the collision area due to the initial velocity of the blade.