• Title/Summary/Keyword: Container engineering

Search Result 1,421, Processing Time 0.028 seconds

A Container Stacking System for the Mobile Harbor (모바일하버에 적용할 컨테이너 적재 유도 시스템)

  • Kim, In-Su;Kim, Kwang-Hoon;Son, Kwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.672-678
    • /
    • 2010
  • The purpose of this study is to develop a stacking guidance system (SGS) of containers in the mobile harbor (MH). A mobile harbor is a floating structure especially designed for loading and unloading containers from and to a large container ship. A novel stacking guidance system was proposed for unloading the container in an effective way against possible vibrations of the floating body. The guidance system works as an aid for loading containers with a wider opening for easier stacking of a container into a moving storage cell due to waves. In order to determine the most effective inclination angle of the cell-guide, this study performed the dynamic analysis of the SGS equipped in the MH subject to fluctuations of the sea. The motions of the guidance system and a container loaded were calculated using ADAMS. The simulation results of the contact force between the two rigid bodies showed that a desirable angle of the cell-guide should be around 20 degrees from the vertical. This proposed SGS can considerably reduce the loading and unloading time, and will enhance the performance of the MH.

An Analysis of Factors Affecting Accidents at a Container Terminal in Busan, Korea (부산 컨테이너 터미널에서의 작업 중 사고발생에 대한 요인 분석)

  • Hyunju Shin;Jae Hun Kim;Gunwoo Lee
    • Korea Trade Review
    • /
    • v.45 no.6
    • /
    • pp.45-54
    • /
    • 2020
  • Occurrence of accidents at a container terminal results in casualties and damages of equipments which are involved in the accidents, and affects the terminal operation. Therefore, analyzing factors affecting occurrence of accidents at a container terminal is important for efficient operation of the terminal. Most of existing studies analyzing factors of accidents have performed in a land transportation field. And most of existing studies in a maritime field have focused on developing risk assessment methods, rather than identifying factors of accidents. This study aims to analyze the factors affecting the damage level which was resulted from accidents at a container terminal in Busan, Korea. After a basic statistical analysis of the accident dataset which was occurred in the terminal, a linear regression model is applied to identify the factors which affect the damage level resulted from the accident. As a result of analysis, it is found that the more number of equipments, facilities and containers damaged from the accidents positively affect the damage level from the accidents, as well as dozing during working. The results of this study are expected to be a basic for developing safety management.

Development of Lashing Analysis Simulator for Container Vessel (컨테이너선의 래싱 어낼러시스 시뮬레이터 개발)

  • Hwang Jin Wook;Yang Sung Ku;Hong Chung You;Park Jae Woong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.90-95
    • /
    • 2004
  • Ail of the world, unification and extension of market enlarged scale of international commerce. Thus, not only production but also circulation of goods is brought into relief and transportation of most freights is performed using container. Container vessels are equipped with marry kinds of securing equipments such as Lashing, twistlock. Lashing is installed mainly in container vessel for the container stack with more than 3 containers. Damage of containers often arise from irrelevant lashing arrangement and bring economical loss. Much time and cost is requested for the Calculation of forces on container and determination of lashing arrangement In this study, We developed lashing analysis simulator which performs calculation and presenst relevant lashing arrangement. It will provide more convenient and efficient environment for lashing analysis.

  • PDF

Yard Planning Considering the Load Profile of Resources in Container Terminals (컨테이너 터미널의 자원 부하를 고려한 최적 장치계획 모형)

  • Won, Seung-Hwan;Kim, Kap-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • The main activities of container terminals are to load container freights to vessels, discharge them from vessels, and store them in the storage yard. Container terminals make many operational plans to execute these functions effectively. If the plans do not consider enough the loads of related resources, they may have low actualities. This study discusses the optimal yard planning model which considers various resources, such as the storage yard, yard cranes, internal vehicles, and travel lanes, in container terminals. The model determines the groups and amounts of containers which are stored in each storage block by using the resource profile. The yard planning problem is represented to the multi-commodity minimal cost flow problem and is formulated to the linear programming model. In order to explain the application of the mathematical model, the numerical examples are presented. Additionally, the relationship between the average load ratio and the relocation ratio is discussed.

A Genetic Algorithm for the Container Pick-Up Problem (컨테이너 픽업문제를 위한 유전자 알고리듬)

  • Lee, Shi-W.
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.362-372
    • /
    • 2011
  • Container pick-up scheduling problem is to minimize the total container handling time, which consists of the traveling distance and the setup time of yard cranes in a container yard. Yard cranes have to pick-up the containers which are stacked in the yard-bays to satisfy the work schedule requirement of quay crane, which loads and unloads containers on or from container ships. This paper allows the movement of multiple yard cranes among storage blocks. A mixed integer programming model has been formulated and a genetic algorithm (GA) has been proposed to solve problems of large sizes. Computational results show that the proposed GA is an effective method.

Container Crane Control: Modified Time-Optimal Traveling Followed by Nonlinear Residual Sway Control (컨테이너 기중기의 제어 : 수정된 시간최적주행과 비선형 잔류흔들림 제어)

  • Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.630-639
    • /
    • 1999
  • To achieve fast loading and unloading of containers from a container ship, quick suppression of the remaining sway motion of the container at the end of each trolley stroke is crucial. Due to the pendulum motion of the container and disturbances like sind, residual sway always exists at the end of trolley movement. In this paper, the sway-control problem of a container crane is investigated. A two-stage control is proposed. The first stage is a time optimal controlfor the purpose of fast trolley traveling. The second stage is a nonlinear control for the quick suppression of residual sway, which starts right after the first stage while lowering the container. The nonlinear control is investigated in the perspective of controlling an underatuated mechanical system, which combines partial feedback linearization to account for the known nonlinearities as much as possible, and variable structure control to account for the unmodeled dynamics and disturbances. Simulation and experimental results are provided.

  • PDF

Analysis of Time-Driven ABC in Container Terminal (컨테이너터미널에서의 시간-동인활동기준원가의 분석)

  • Lee, Chae Min;Shin, Jae Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.7-8
    • /
    • 2014
  • One of the important factor for port selection is total handling charge(THC) of container terminal, and consequence of that the actual cost is vital for variation of THC. However, a great majority of the reported ABC applications have been limited to manufacturing and a little has been written on how the ABC approach can be used for logistics company especially for container terminal. This study proposes the applicable conceptual framework and cost management model based on Time-Driven Activity-Based Costing for container terminal.

  • PDF

The structural and non-linear dynamic analysis for radioactive waste container

  • Yu-Yu Shen;Kuei-Jen Cheng;Hsoung-Wei Chou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3010-3016
    • /
    • 2023
  • In recent years, the development of radioactive waste containers for nuclear facility decommissioning and dismantling is a critical issue because the Taiwan domestic boiling water reactor nuclear power plant is going to be decommissioned. The main purpose of this research is to design a metal container that meets the structural requirements of related regulations. At first, the shielding analysis was performed by varying dimensions of radioactive waste to determine the storage efficiency of the container. Then, a series of structural analyses for operational and accidental conditions of the container with full load were conducted, such as lifting, stacking, and drop impact conditions. On the other hand, the field drop impact tests were carried out to ensure structural integrity. The present research demonstrates the structural safety of the developed container for decommissioned nuclear facilities in Taiwan.

Optimal State Feedback Control of Container Crane Using RCGA Technique (RCGA 기법을 이용한 컨테이너 크레인의 최적 상태 피드백 제어)

  • Lee, Yun-Hyung;Yoo, Heui-Han;Cho, Kwon-Hae;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.247-252
    • /
    • 2007
  • The container crane is one of the most important equipments at container terminal. If its working time in cycle could be reduced then container terminal efficiency and service level can be increased. So there are many i1forts to reduce working time of container cranes. It means how to design the controller with good performance which has small overshoot and swing motion of container crane. We, in this paper, present a state feedback controller based on LQ theory incorporating a RCGA which means real-coded genetic algorithm RCGA can search state feedback gains under given objective function. A set of simulation works are carried out in order to prove the control effectiveness of the proposed methods.

Deriving Reference Data for Alarm System in a Container Crane by Fluid-Structure Interaction Analysis (유동구조연성해석을 통한 컨테이너 크레인의 경보시스템용 기준 데이터 도출)

  • Han, Dong-Seop;Han, Geun-Jo;Kwak, Ki-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1091-1096
    • /
    • 2010
  • This study was conducted to provide reference data for designing an alarm system that can help prevent the overturning of a container crane under wind load. Two methods, namely, fluid-structure interaction (FSI) analysis and windtunnel test, were adopted in this investigation. To evaluate the effect of wind load on the stability of the crane, a 50-ton-class container crane that is widely used in container terminals was adopted as the analysis model and 19 values were considered as design parameters for wind direction. First, the wind-tunnel test for the reduced-scale container crane model was performed according to the wind direction by using an Eiffel type atmospheric boundary-layer wind tunnel. Next, the FSI analysis for the real-scale container crane was conducted using ANSYS and CFX. Then, the uplift force determined from the FSI analysis was compared with that determined from the wind-tunnel test. Finally, a formula to compensate for the difference between the results of the FSI analysis and the wind-tunnel test was proposed.