• Title/Summary/Keyword: Contact-error

Search Result 410, Processing Time 0.025 seconds

An Investigation into the effect of friction in the split hopkinson pressure bar (SHPB) test by numerical experiments (수치해석을 이용한 SHPB 시험의 마찰영향 분석)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Shin, Hyun-Ho;Kim, Jong-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.204-209
    • /
    • 2008
  • The interest in the mechanical behavior of materials at high strain rates has increased in recent years, and by now it is well known that mechanical properties can be strongly influenced by the speed of applied load. The split Hopkinson pressure bar (SHPB) has been widely used to determine mechanical properties of materials at high loading rates. However, to ensure test reliability, measurement error source must be accounted for and eliminated. During experiment, the specimens were located between the incident and the transmit bar. The presence of contact frictions between the test bars and specimen may cause errors. In this work, numerical experiments were carried out to investigate the effect of friction on test results. In SHPB test, the measured stress by the transmitted bar is assumed to be flow stress of the test specimen. Through the numerical experiments, however, it is shown that the measured stress by the transmit bar is axial stress components. When, the contact surface is frictionless, the flow stress and the axial stress of the specimen are about the same. When the contact surface is not frictionless, however, the flow stress and the axial stress are not the same anymore. Therefore, the measured stress by the transmitted bar is not flow stress. The effect of friction on the difference between flow stress and axial stress is investigated.

  • PDF

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

Applying the Robust Force Tracking Controller to assist the Sealing Robot System on a Concrete Surface (강인한 힘 추적 제어기를 적용한 콘크리트 표면 추종 로봇 시스템)

  • Cho, Cheol-Joo;Lim, Kye-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.389-396
    • /
    • 2016
  • The sealing robot must be able to calculate the slope of a contact surface for complete adherence of the sealing on different concrete shapes. After the slope is obtained, the robot will track on the surface of the concrete, but this process contains an error in the actual purpose of the force command. The reason this a phenomenon occurs, the non-linearity of the contact surface and the end-effector, is due to parasitic coupling. Errors like make it difficult to measure accurately the respective factors. Therefore, it is regarded as a disturbance that occurs when it follows the work surface it. In this paper, we selected the friction coefficient of the surface as a control factor and designed a compensator to reduce effects of disturbance. Finally, in view of the non-linearity of the end-effector of a robot to contact surfaces directly, we propose a robust force tracking controller in the finite range for managing disturbances that occur during the sealing.

Modeling for the strap combined footings Part I: Optimal dimensioning

  • Aguilera-Mancilla, Gabriel;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.97-108
    • /
    • 2019
  • This paper presents a new model for the strap combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. Research presented in this paper shows that can be applied to the T-shaped combined footings and the rectangular combined footings. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the strap combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. Numerical examples are presented to obtain the optimal area of the contact surface on the soil for the strap combined footings subjected to an axial load and moments in two directions applied to each column. Appendix shows the Tables 4 and 5 for the strap combined footings, the Table 6 for the T-shaped combined footings, and the Table 7 for the rectangular combined footings.

Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor (터빈로터 중심공 검사용 자기주행 공압형 로봇 개발)

  • Kang, Baejun;An, Myungjae;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.

General Asymptotic Formulation for the Bifurcation Problem of Thin Walled Structures in Contact with Rigid Surfaces

  • Kwon, Young-Joo;Triantafyllidis, N.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.48-56
    • /
    • 2000
  • The bifurcation problem of thin walled structures in contact with rigid surfaces is formulated by adopting the multiple scales asymptotic technique. The general theory developed in this paper is very useful for the bifurcation analysis of waviness instabilities in the sheet metal forming. The formulation is presented in a full Lagrangian formulation. Through this general formulation, the bifurcation functional is derived within an error of O($(E^4)$) (E: shell's thickness parameter). This functional can be used in numerical solutions to sheet metal forming instability problem.

  • PDF

Three-Dimensional Finite Element Analysis of a Vacuum Interrupter (진공 인터럽터의 3차원 유한요소해석)

  • Choi, Seung-Kil;Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.693-698
    • /
    • 1999
  • Vacuum interrupters have a special asymmetric electrode structure to generate an magnetic field and consequently to increase the interrupting ability. Accordingly 2-dimensional analysis has a large analysis error because radial flux can not be considered. In this paper, in order to analyse the electric field distribution of a vacuum interrupter with arc shield more accurately, 3-dimensional finite element method(FEM) is used. The induced electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results also show that the induced potential of shield causes electric field distortion so that the maximum value of electric field in a vacuum interrupter with arc shield is higher than that without one.

  • PDF

A study on the characteristics of torque transducer (토오크 변환기의 특성에 대한 연구)

  • 최만용;임동규;한응교
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.48-55
    • /
    • 1982
  • In the present the strain gauge type torque transducers consist of solid shaft as sensor, slip ring, brush and bridge circuit as detecting circuit. So in the case of measuring the low-capacity torque, the error caused by technical mistake in mounting stain gauge on the small sensor and especially by contact resistance between slip ring and brush takes place more than the large sensor. Therefore in this study constant voltage in order to have no effect of contact resistance is supplied to the hollow shaft and Schrobron Bridge Circuit. Through the experiment good results were obtained as follows; linearity, hysterisis and zero drift as static characteristics is within 1% F.S respectively. Also when loading, zero drift is about 2% F.S.

  • PDF

Characterization and Optimization of the Contact Formation for High-Performance Silicon Solar Cells

  • Lee, Sung-Joon;Jung, Won-Cheol;Han, Seung-Soo;Hong, Sang-Jeen
    • Journal of the Speleological Society of Korea
    • /
    • no.82
    • /
    • pp.5-7
    • /
    • 2007
  • In this paper, p-n junction formation using screen-printed metalization and co-firing is used to fabricate high-efficiency solar cells on single- crystalline silicon substrates. In order to form high-quality contacts, co-firing of a screen-printed Ag grid on the front and Al on the back surface field is implemented. These contacts require low contact resistance, high conductivity, and good adhesion to achieve high efficiency. Before co-firing, a statistically designed experiment is conducted. After the experiment, a neural network (NN) trained by the error back-propagation algorithm is employed to model the crucial relationships between several input factors and solar cell efficiency. The trained NN model is also used to optimize the beltline furnace process through genetic algorithms.

Overlay correction in sub-0.18${\mu}{\textrm}{m}$ metal layer photolithography process (0.18${\mu}{\textrm}{m}$이하 metal layer 사진공정에서의 overlay 보정)

  • 이미영;이홍주
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.05a
    • /
    • pp.106-108
    • /
    • 2002
  • 반도체 physical layout design rule이 작아짐에 따라 Proximity effect와 overlay가 Pattern 구현에 크게 영향을 미치고 있다. Metal layer와 contact의 부족한 overlay margin으로 overlay 불량이 발생하고, 감소한 space margin으로 인해 bridge와 같은 문제가 나타난다. 따라서, resolution을 향상시키고, 최소한의 overlay margin을 확보함으로써 미세 pattern의 구현을 가능하게 한다. 이를 위해 OPC와 attPSM 같은 분해능향상기술이 사용된다. 그러나 attPSM의 사용은 원하지 않는 pattern이 생성되는 sidelobe와 같은 문제가 발생한다. 따라서 serial image simulation올 통해 추출한 rule을 rule-based correction에 적용하여 sidelobe현상을 방지한다. 그리고 overlay margin 부족으로 나타나는 문제는 metal layer와 contact overlap되는 영역의 line edge를 확장하고, rule checking을 통해 최소한의 space margin을 확보하여 해결한다 따라서 overlay error를 rule-based correction을 사용하여 효과적으로 방지한다.