• 제목/요약/키워드: Contact width

검색결과 355건 처리시간 0.033초

BCSC(Buired contact Solar cel1)의 제조를 위한 laser scribing Laser scrining for Buired contact Solar ell

  • 조은철;지일환;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 춘계학술대회 논문집
    • /
    • pp.154-159
    • /
    • 1995
  • To achieve a high aspect ration of metal contact, buried contact solar cell scribe the silicon surface using laser. The Q-switched NdLYAG laser which has 1.064$\mu\textrm{m}$ wavelength use for silicon scribing with 25~40$\mu\textrm{m}$ width and 20~200$\mu\textrm{m}$ depth capabilities. The 2~3% shading losses are very low campared to the screen printing solar cell. In this paper, we investigate the silicon scribing theory and pratice, scribing system for BCSC processing.

  • PDF

Determination of safety factor for agricultural gear reducer using simulation software

  • Hong, Soon-Jung;Kim, Yong-Joo;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Soo-Bok;Noh, Hyun-Seok;Jang, Jeong-Hoon
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.283-289
    • /
    • 2018
  • Agricultural gear reducers are used in a variety of agricultural machinery designs such as in agricultural tractors and transport cars, and even greenhouses. For greenhouses, a gear reducer is used to control windows on the side and the roof. Gear reducers for agricultural applications are designed using the empirical method because of the lack of a standard for experimentation. Simulation is necessary for the optimal design of an agricultural gear reducer. There are many advantages to this optimization such as low-cost maintenance, reduced size, and weight. In this study, bending and contact safety factor simulation for the gear reducer of a greenhouse was conducted by decreasing the face widths of helical gear shaft 2 and shaft 3 from 30.8 and 30 mm, respectively, at an interval of 4 mm. The bending and contact safety factors were calculated using AGMA standard. Simulation results showed that bending and contact safety factors decreased rapidly when the face width of the helical gear on shaft 2 was 30 mm and the face width of helical gear on shaft 3 decreased from 30.8 mm to 26.8 mm, suggesting that it would be safe to reduce the face width of the helical gear on shaft 3 to 26.8 mm. The reduction of the face width also reduced the weight of the agricultural gear. This study suggests that the agricultural gear reducer safety factor decreases as the face width decreases.

무접점 답판 센서를 사용한 차량 바퀴의 윤폭 / 윤거 획득 알고리즘 개발 (Development of wheel width and tread acquisition algorithm using non-contact treadle sensor)

  • 서연곤;류창국;이배호
    • 한국전자통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.627-634
    • /
    • 2016
  • 국내의 유로 도로에서 사용되는 차종 분류 장치는 차량의 윤폭과 윤거 정보를 산출하는 답판 센서를 사용하는 방식이 일반적이다. 이러한 답판 센서는 주행 중인 차랑의 바퀴가 접촉할 때 발생하는 충격으로 인해 높은 내구성을 요구한다. 최근 한국도로공사는 요금소에서 화물차 고속 차로의 운영을 시작하였고, 화물차가 고속 주행할 때 발생하는 설계 기준 이상의 충격으로 인한 파손과 이에 따른 유지보수 및 관리 비용의 증가가 염려되고 있다. 본 논문에서는 물리적 충격에 대한 내구성을 향상 시킨 무접점 답판 센서를 사용하여, 통과 차량에 대한 최적의 윤폭 / 윤거를 획득하는 알고리즘을 제안하였다. 이는 한국도로공사 6종 분류 기준 중, 축수 분류인 4, 5 종을 제외한 1종/2종/3종 그리고 6종 차량에 대해 현장 실험을 수행하였고, 윤폭 최대 오차 ${\pm}2cm$, 정확도 98% 이상 그리고 윤거 최대 오차 ${\pm}8cm$, 정확도 97% 이상으로 추후 차종 분류 장치 적용에 대한 그 유효성을 입증하였다.

Rational designing of double-sided nail plate joints using the finite element method

  • Zhou, Tinozivashe;Guan, Z.W.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.239-257
    • /
    • 2008
  • Double-sided punched metal plate timber fasteners present projections on both sides, which offer improved joint fire resistance and better joint aesthetics. In this paper, 3-D nonlinear finite element models were developed to simulate double-sided nail plate fastener timber joints. The models, incorporating orthotropic elasticity, Hill's yield criterion and elasto-plasticity and contact algorithms, are capable of simulating complex contact between the tooth and the timber and between the base plate and the timber in a fastener. Using validated models, parametric studies of the double-sided nail plate joints was undertaken to cover the tooth length and the tooth width. Optimal configuration was assumed to have been attained when increase in nail plate tooth width did not result in a raise in joint capacity, in conjunction with the optimum tooth length. This paper presents the first attempt to model and optimise tooth profile of double-sided nail plate fastener timber joints, which offers rational designs of such fasteners.

산화물 박막 트랜지스터 동작에 대한 접촉 저항의 영향 (Study on contact resistance on the performance of Oxide thin film transistors)

  • 이재상;장성필;구상모;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.63-64
    • /
    • 2009
  • The TFTs have been fabricated with 3 different geometry SID electrodes which have the same channel W/L ratio (W/L = 5) due to constant channel resistance, The 3 samples have different channel widths (350, 150, and $25\;{\mu}m$) and channel lengths (70, 30, and $5\;{\mu}m$) by fixed channel W/L ratio simultaneously on one chip for reliable comparisons. Resultant on-current and field effect mobility are proportional to the channel width, while the subthreshold swing is inversely proportional to the channel width mainly due to the change of contact resistance. These results show that the contact resistance strongly affects the device performances and should be considered in the applications.

  • PDF

산화물 박막 트랜지스터 동작에 대한 접촉 저항의 영향 (Study on Contact Resistance on the Performance of Oxide Thin Film Transistors)

  • 이재상;구상모;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.747-750
    • /
    • 2009
  • The TFTs have been fabricated with 3 different geometry SID electrodes which have the same channel W/L ratio (W/L = 5) due to constant channel resistance, The 3 samples have different channel widths (350, 150, and 25 ${\mu}m$) and channel lengths (70, 30, and 5 ${\mu}m$) by fixed channel W/L ratio simultaneously on one chip for reliable comparisons. Resultant on-current and field effect mobility are proportional to the channel width, while the subthreshold swing is inversely proportional to the channel width mainly due to the change of contact resistance. These results show that the contact resistance strongly affects the device performances and should be considered in the applications.

립실의 접촉력 및 온도분포 해석에 관한 연구 (A Study on the Contact Force and Temperature Distribution of Lip Seals)

  • 김청균;전인기;김종억
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1559-1566
    • /
    • 1994
  • Using the finite element method, the contact force, contact band width and temperature distribution of lip seals analyzed for the interference including some nonlinearities such as material nonlinearity, geometrical nonlinearity and nonlinear contact boundary condition. The calculated results showed that the contact stress concentrated on the contact zone between the garter spring and the rubber toward the flex side, the contact edge of lip seals. The high contact forces due to the increased interference separate the sealing gap between the lip edge and the rotating shaft. This may lead to leak the sealed oil.

실린더형 패드와 평판 시험편간 프레팅 피로의 접촉폭 크기효과에 관한 평가 (Estimation on a Contact Size Effect in Fretting Fatigue Between Cylindrical Pad and Flat Specimen)

  • 김진광;조상봉
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.116-125
    • /
    • 2008
  • In general, fretting is a contact damage process due to micro-slip associated with small amplitude oscillatory movement between two surfaces in contact. Previous studies in fretting fatigue have observed a contact size effect related to contact width. The volume-averaging method of theoretically predicted contact stress fields was required to emulate experimental trends and to predict the observed contact size effects. This contact size effect is captured by the mean values of stresses and strains at the element integration points of FE model and two critical plane models (SWT, FS) in the present paper. It is shown that crack nucleation and fretting fatigue life can be predicted by the FE-based critical plane models.

Effects of PTO gear face width on safety factors

  • Jang, Jeong-Hoon;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Chun, Won-Ki;Kim, Seon-Il;Kwon, Oh-Won;Kim, Chang-Won;Hong, Soon-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.650-655
    • /
    • 2016
  • Gears are components of transmission which transmit the power of an engine to a machine and offer numerous speed ratios, a compact structure, and high efficiency of power transmission. Gear train design in the automotive industry uses simulation software. However, PTO (Power Take-Off) gear design for agricultural applications uses the empirical method because of the wide range of load fluctuations in agricultural fields. The PTO is an important part of agricultural tractors which transmits the power to various tractor implements. Therefore, a simulation was essential to the optimal design of the PTO. When the PTO gear is optimally designed, there are many advantages such as low cost, reduced size, and light weight. In this study, we conducted the bending and contact safety factor simulation for the PTO gear of an agricultural tractor. The bending and contact safety factors were calculated on ISO 6336 : 2006 by decreasing the face widths of the PTO pinion and wheel gear from 18 mm at an interval of 1 mm. The safety factor of the PTO gear decreased as the face width decreased. The contact safety factors of the pinion and wheel gear were 1.45 and 1.53, respectively, when the face width was 18 mm. The simulation results showed that the face width of the PTO gear should be greater than 9 mm to maintain the bending and contact safety factors higher than 1. It would be possible to reduce the weight of the PTO gear for different uses and working conditions. This study suggests that the possibility of designing an optimal PTO gear decreases as its face width decreases.

Continuous and discontinuous contact problem of a magneto-electro-elastic layer

  • Comez, Isa;Karabulut, Pembe Merve
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.67-77
    • /
    • 2022
  • In this study, frictionless continuous and discontinuous contact problems of a magneto-electro-elastic layer in the presence of the body force were discussed. The layer was indented by a rigid cylindrical insulating punch and supported by a rigid substrate without bond. Applying the Fourier integral transform technique, the general expressions of the problem were derived in the presence of body force. Thanks to the boundary conditions, the singular integral equations were obtained for both the continuous and the discontinuous contact cases. Gauss-Chebyshev integration formulas were used to transform the singular integral equations into a set of nonlinear equations. Contact width under the punch, initial separation distance, critical load, separation regions and contact stress under the punch and between the layer, and substrate were given as a result.