• Title/Summary/Keyword: Contact width

Search Result 353, Processing Time 0.021 seconds

Effect of Boron Content on Atomic Structure of Boron-bearing Multicomponent Oxide Glasses: A View from Solid-state NMR (비정질 소듐 보레이트와 붕소를 함유한 다성분계 규산염 용융체의 붕소의 함량에 따른 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, A Chim;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.155-165
    • /
    • 2016
  • Understanding the effect of boron content on atomic structures of boron-bearing multicomponent silicate melts is essential to reveal the atomistic origins of diverse geochemical processes involving silica-rich magmas, such as explosive volcanic eruption. The detailed atomic environments around B and Al in boron-bearing complex aluminosilicate glasses yield atomistic insights into reactivity of nuclear waste glasses in contact with aqueous solutions. We report experimental results on the effect of boron content on the atomic structures of sodium borate glasses and boron-bearing multicomponent silicate melts [malinkoite ($NaBSiO_4$)-nepheline ($NaAlSiO_4$) pseudo-binary glasses] using the high-resolution solid-state NMR ($^{11}B$ and $^{27}Al$). The $^{11}B$ MAS NMR spectra of sodium borate glasses show that three-coodrinated boron ($^{[3]}B$) increases with increasing $B_2O_3$ content. While the spectra imply that the fraction of non-ring species decreases with decreasing boron content, peak position of the species is expected to vary with Na content. Therefore, the quantitative estimation of the fractions of the ring/non-ring species remains to be explored. The $^{11}B$ MAS NMR spectra of the glasses in the malinkoite-nepheline join show that four-coordinated boron ($^{[4]}B$) increases as $X_{Ma}$ [$=NaBSiO_4/(NaBSiO_4+NaAlSiO_4)$] increases while $^{[3]}B$ decreases. $^{27}Al$ MAS NMR spectra of the multicomponent glasses confirm that four-coordinated aluminum ($^{[4]}Al$) is dominant. It is also observed that a drastic decrease in the peak widths (full-width at half-maximum, FWHM) of $^{[4]}Al$ with an addition of boron ($X_{Ma}=0.25$) in nepheline glasses. This indicates a decrease in structural and topological disorder around $^{[4]}Al$ in the glasses with increasing boron content. The quantitative atomic environments around boron of both binary and multicomponent glasses were estimated from the simulation results of $^{11}B$ MAS NMR spectra, revealing complex-nonlinear variation of boron topology with varying composition. The current results can be potentially used to account for the structural origins of the change in macroscopic properties of boron-bearing oxide melts with varying boron content.

Fabrication and Characterization of Transparent Conductive Film based on Bacterial Cellulose (Bacterial cellulose를 기반으로 하는 투명전도성막의 제조 및 특성평가)

  • Yim, Eun-Chae;Kim, Seong-Jun;Kee, Chang-Doo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.766-773
    • /
    • 2013
  • A transparent film was fabricated based on bacterial cellulose (BC), BC has excellent physical strength and stability at high temperature and it is an environmental friendly flexible material. In order to improve the conductivity, silver nanowire (AgNW) and/or graphene were introduced to the BC membrane. The aspect ratio of the AgNW synthesized in this study was 214, with a length of $15{\mu}m$ and width of 70 nm. The higher aspect ratio improved the conductivity by reducing the contact resistance. The thermal and electrical properties of 7 types of films prepared were investigated. Each film was fabricated with rectangular shape ($2mm{\times}2mm{\times}50{\mu}m$). The films were scored with a net shape by a knife, and filled with AgNW and graphene to bestow conductivity. The film filled with AgNW showed favorable electrical characteristics with a thickness of $350{\mu}m$, electron concentration of $1.53{\times}10^{19}$, electron mobility of $6.63{\times}10^5$, and resistivity of 0.28. The film filled with graphene had a thickness of $360{\mu}m$, electron concentration of $7.74{\times}10^{17}$, electron mobility of 0.17, and resistivity of 4.78. The transmittances at 550 nm were 98.1% and 80.9%, respectively. All the films were able to light LEDs bulbs although their brightness differed. A thermal stability test of the BC and PET films at $150{\pm}5^{\circ}C$ showed that the BC film was more stable, whereas the PET film was quickly banded. From these results, it was confirmed that there it is possible to fabricate new transparent conductivity films based on BC.

Biological stability of Zirconia/Alumina composite ceramic Implant abutment (지르코니아/알루미나 복합 지대주의 생물학적 안정성에 관한 연구)

  • Bae, Kyu-Hyun;Han, Jung-Suk.;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Cho, Ki-Young;Chung, Chong-Pyoung;Han, Soo-Boo;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.555-565
    • /
    • 2006
  • The purpose of the present study is to evaluate the biological stability of the zirconia/alumina composite abutment by histologic and radiographic examination in clinical cases. 17 partially edentulous patients (5 men and 12 women, mean age 47) were treated with 37 implants. The implants were placed following the standard two-stage protocol. After a healing period of 3 to 6 months, zirconia/alumina composite abutments were connected. All radiographs were taken using paralleling technique with individually fabricated impression bite block, following insertion of the prosthesis and at the 3-, 6-, 12 month re-examinations. After processing the obtained images, the osseous level was calculated using the digital image in the mesial and distal aspect in each implant. An ANOVA and t-test were used to test for difference between the baseline and 3-, 6-, 12 months re-examinations, and for difference between maxilla and mandible. Differences at P <0.05 were considered statistically significant. For histologic examination, sample was obtained from the palatal gingiva which implant functioned for 12 months. Sections were examined under a light microscope under various magnifications. Clinically, no abutment fracture or crack as well as periimplantitis was observed during the period of study. The mean bone level reduction(${\pm}standard$ deviation) was 0.34 rom(${\pm}\;0.26$) at 3-months, 0.4 2mm(${\pm}\;0.30$) at 6-months, 0.62 mm(${\pm}\;0.28$) at 12-months respectively. No statistically significant difference was found between baseline and 3-, 6-, 12-months re-examinations (p > 0.05). The mean bone level reduction in maxilla was 0.33(${\pm}0.25$) at 3-months, 0.36(${\pm}0.33$) at 6-months, 0.56(${\pm}0.26$) at 12-months. And the mean bone level reduction in mandible was 0.35(${\pm}0.27$) at 3-months, 0,49(${\pm}0.27$) at 6-months, 0.68(${\pm}0.30$) at 12-months. No statistical difference in bone level reduction between implants placed in the maxilla and mandible. Histologically, the height of the junctional epithelium was about 2.09 mm. And the width was about 0.51 mm. Scattered fibroblasts and inflammatory cells, and dense collagen network with few vascular structures characterized the portion of connective tissue. The inflammatory cell infiltration was observed just beneath the apical end of junctional epithelium and the area of direct in contact with zirconia/alumina abutment. These results suggest the zirconia/alumina composite abutment can be used in variable intraoral condition, in posterior segment as well as anterior segment without adverse effects.