• Title/Summary/Keyword: Contact ring

Search Result 254, Processing Time 0.023 seconds

Optimized Design of O-Ring using Taguchi Method (다구찌 실험법을 이용한 O-링 형상의 최적설계)

  • Cho Seung Hyun;Kim Chung Kyun;Kim Young Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.241-247
    • /
    • 2003
  • The sealing performance of O-ring is effected in environments of the O-ring seal, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, design of composite O-ring under pressurized, compressed was optimized based on Taguchi experimental design method. and it analysed numerically using non-linear finite element method. Ogden model in which is developed based on the experimental data is used for simulating the contact stress and strain in NBR and PTFE materials. Sensitivity analysis was performed with FEM results, which are contact stress, strain and temperature as variable.

  • PDF

Design Tolerance of High Speed Spindle considering the Variation of Ball Contact Angle in the Angular Contact Ball Bearings (고속 주축베어링의 볼 접촉각 변동을 고려한 주축 설계공차)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.609-615
    • /
    • 2010
  • Angular contact ball bearings in a high speed spindles are under the extreme conditions, such as high temperature, big centrifugal force and thrust cutting forces. So, the assembly contacts between spindle shaft and inner ring bearings, bearing housing and outer ring of bearings are occasionally unstable at high speed revolution. Furthermore, the ball contact angle of a bearing, which influence stiffness and lifetime of bearings, are changed according to loads and rotational speed. To analyze internal forces of a bearing under high speed revolution, the ball contact are calculated using nonlinear equations in consideration of rotational speed, thrust loads and raceway form. Diameter increase of inner and outer ring by influence factors, such as internal forces to inner and outer ring, centrifugal force and temperature of inner and outer rings are calculated to establish stable state in bearing assembly in high speed spindle. Finally, contribution ratio of influence factor to assembly design tolerance of inner and outer rings are shown and the stable assembly design tolerance are proposed.

FE Analysis on the Sealing Characteristics of Multi-Contact Packing for Swivel Joint (스위블 연결구용 멀티접촉패킹의 밀봉특성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.51-55
    • /
    • 2014
  • This paper was analyzed for a sealing characteristics of single lip contact type o-ring and multiple lip contact type packing for a swivel joint using the finite element method. According to the FE analysis, a conventional o-ring produces a maximum contact normal stress of 2.5MPa for a supplied LP gas pressure of 1.8MPa, which is related to the sealing performance. But, a sealing performance of newly invented multi-lip packing produces a maximum contact normal stress of 3.01MPa, which is 20.4% higher than that of a conventional o-ring. And an extrusion of a conventional o-ring, which is strongly related to the sealing endurance safety, was occurred at a supplied gas pressure of 1.62MPa. But, a multi-lip packing does not produce up to the gas pressure of 1.8MPa. This means that a new type of multi-lip packing may have excellent sealing characteristics because of no extrusion for high gas pressure. Thus, multi-lip packing with multiple lip contacts may be useful for high sealing and endurance safety compared to that of the conventional o-ring with a single lip contact.

Stress Analysis of Pipe Connection Process Using Clamping Ring (구속 링을 이용한 관 결합 공정의 응력해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • The pipe connection process using a clamping ring is used for joining small pipes in the refrigerator and air-conditioner industries instead of the brazing process, which induces inevitable thermal deformation in the pipes. However, few studies have been carried out on the process to select optimal parameters in joining pipes, and studies on the relation between the process parameters of the connection and connecting force of the joint have not been conducted. In this study, the connection process of pipes with the clamping ring was modeled using the finite element method (FEM) and analyzed to obtain the contact stress distribution between the pipes with which the connecting force of the joint was estimated. Considering the characteristics of pipe connection, the process was modeled and simulated in a two-dimensional axisymmetric solution domain. With the numerical model, the effect of ring shape on the connection was studied by adding a projection to the end of a ring or changing the length of a ring. The results of the analyses revealed that the contact stress distribution could be predicted with the suggested model. The effect of the ring shape was also presented. The effect of any combination of process parameters could be easily estimated through the related analyses.

A Study on Design Sensitivity of Elastomeric O-ring Squeezed and Highly Pressurized Under Laterally One-sided Constrained Condition (단 측벽 구속하에서 압축 및 내압을 받는 고무 오링의 설계 민감도 연구)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2007
  • Static or dynamic elastomeric O-ring seals are installed between joining parts, and play key roles of high pressure-tightening. Sealing performance and structural safety of the O-ring are dependent on groove design, plain diameter, squeeze and applications such as pressure and temperature. In this study, to solve O-ring problem squeezed and highly pressurized under laterally one-sided constrained condition, hyperelastic FE analyses are performed, and FE results are compared with measured ones by computer-aided tomography, deformed shape and extrusion depth of the O-ring. Through the comparisons, FE analysis technique was verified. In order to evaluate design sensitivity, Taguchi method was used to select FE analysis cases. Adjustment parameters are clearance gap, groove comer radius, plain diameter and squeeze. By means of verified FE analysis technique, it has been analysed how the parameters have effects on contact stress fields, internal stress fields, and extrusion depths. Sealing performance has been evaluated based on contact stress fields and contact widths, and structural safety on internal stress and strain, extrusion lengths.

Computer Simulation on Insulation Characteristics of Composite Material O-rings (복합소재 O-링 접합계면의 단열특성에 관한 컴퓨터 시뮬레이션)

  • Kim, Chung-Kyun;Kim, Sung-Won;Cho, Seung-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.291-295
    • /
    • 2002
  • O-ring seal is usual component part in various mechanical apparatus for sealing that makes efficient performance of the equipments. The sealing performance of O-ring is affected in environments of the O-rings, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, a pressurized, compressed elastomeric bi-polymer O-ring inserted into a rectangular groove is analyzed numerically using the MARC finite element program. The calculated FEM results showed that bi-polymer O-ring that is manufactured by NBR for an inner and FFKM for an outer ring shows a low temperature distribution among various bi-polymer O-ring models. But, the normal contact stress between the flange and upper part of the O-ring is small compared to other bi-polymer model.

  • PDF

Finite Element Analysis on the Deformation Behavior Stability of Contact Sealing Rings (접촉식 밀봉 링의 변형거동 안정성에 관한 유한요소해석)

  • Kim, Chung Kyun;Kim, Do Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.47-51
    • /
    • 2012
  • In this study, the deformation behavior stability of sealing rings with three different cross sectional areas has been presented using a FEM technique. To investigate the deformation behavior stability, the initial compression rate of 25% has been applied to the sealing ring, which is molded with a nitrile butadiene rubber. The maximum strain, maximum stress, and maximum contact normal stress have been analyzed for the working fluid pressure of $25kgf/cm^2$. The FEM results show that the maximum strain of a hollow o-ring and a hollow rectangular ring with a hollow space in the center of a sealing ring is higher than that of a conventional o-ring, but the maximum stress and the maximum contact normal stress are low. In these results, the sealing rings with a hollow space in the center of the cross sectional area is recommended to increase an extended endurance stability of sealing rings. But, the solid sealing ring is designed to guarantee the sealing safety of a contact sealing ring.

Prediction of Spread and Contact Region in Ring Rolling Process Using Rigid- plastic Finite Element Method (강소성 유한요소법을 이용한 링 압연 공정에서의 폭 퍼짐량 및 접촉영역 예측)

  • Ko, Young-Soo;Yoon, Hwan-Jin;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2670-2677
    • /
    • 2002
  • The ring rolling process involves three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece. In this study, the deformation analysis and geometric updating algorithm of the ring rolling process were verified by using the three-dimensional rigid-plastic finite element method. Manufacturing processes for plain ring and T-shaped ring were investigated by comparing experiments with simulation results, especially in side spread, load-stroke and pressure distribution, showing a good agreement. It was concluded that the simulation method would be a useful tool for the design of a ring rolling process.

A Study on the Compression Characteristics of Bi-polymer O-rings (복합소재 O-링의 압축변형 특성에 관한 연구)

  • Kim, Do-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.171-176
    • /
    • 2005
  • O-ring seal is an essential component in various mechanical apparatuses for a sealing of oil container and pressure vessels. This paper presents the sealing pressure and compressive contact behaviors of hi-polymer O-rings, which is made by an outer shell of FFKM material and an inner solid ring of FKM one. The contact normal pressure and its ratios are measured by experimental method with an automatic control system of the working temperature and analyzed numerically by using the non-linear Marc FEM program. The results show reasonably good agreements between the computed FEM results and measured ones when the operating temperature is kom normal temperature of $18^{\circ}C$ and a high temperature of $300^{\circ}C$ But the compared values between the computed and tested results show a little difference because of the increased temperature, which is related to the non-linear parameter of the O-ring material. Bi-polymer 0-ring shows a good contact normal stress and compression behavior for a given operation temperature and compression ratio.

Variation of Inter-Ring Gas Pressure in Internal Combustion Engine (내연기관 피스톤 링들 사이 가스압력 변동)

  • Yun, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.238-249
    • /
    • 1995
  • The gas pressure acting on the rings in internal combustion engine influences the friction and wear characteristics. Inter-ring pressure variation during engine operation results from cylinder gas flow through a piston-ring pack. The flow passages consist of ring end gaps and clearances between the ring and the piston groove. The gas flow in the clearance between the ring and the groove is directly affected by the axial motion of the ring in the groove. In this paper the asperity contact force is newly considered in the prediction of the clearence between the ring and the groove surface. This term must be taken into account physically in case that the clearance get narrow rather than asperity height between the ring and the groove surface. Finally, comparisons of calculated inter-ring gas pressures based on the analytical method are made with the measured ones. The agereement was found to be good below midium engine speed, 3000rpm. In order to obtain accurate analytical results to the extend of high rpm range, it is recommended to include oil ring motion as well as top and second ring in analytical model.

  • PDF