• 제목/요약/키워드: Contact normal force

검색결과 185건 처리시간 0.031초

6축 힘 감지기를 사용한 챔퍼(chamfer)가 없는 부품의 조립 작업 (Chamferless part-mating using 6-axis force sensor)

  • 성영휘;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1155-1160
    • /
    • 1991
  • Active part mating algorithm using 6-axis force sensor data for the assembly automation and/or teletobotics is presented and experimented. Parts to be mated are cylindrical and have no chamfers. There are basically two modes. One is the normal mode with only a positional error, the other is the tilted mode with an orientational error in addition to a positional error. The used algorithm distinguishes a contact external to the hole from that of internal to the hole in order to perform part-mating in spite of the relative tilt between the hole and the peg.

  • PDF

유한요소해석을 이용한 이형성 고관절의 선반형성술에 대한 생체역학 해석 (Biomechanical Analysis of the Shelf Operation for Dysplastic Hip Joint by Finite Element Analysis)

  • 박원만;김윤혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.519-520
    • /
    • 2006
  • The aim of this study was biomechanical analysis of shelf operation in patients with dysplastic hip joint by finite element contact analysis. Two dimensional CT images were used to construct the finite element models to analyze the contact pressure, and the 3D expansion of the Ninomiya's method was used in the calculation of the resultant force in the hip joint. The surgery recovered the center-edge angles to the normal anatomical range and increased the contact areas in two patients. The maximum contact pressures and von-mises stresses were decreased. The present study provides the biomechanical guideline of optimal surgical parameters to maximize the surgical efficiency and the clinical outcomes in dysplastic hip joint using the shelf operation.

  • PDF

열간 연속판재 압연기의 작업롤 전동피로해석 (Analysis of the Rolling Contact Fatigue for Work Roll in Finishing Mill of Hot Strip Rolling)

  • 배원병;박해두;송길호
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.292-300
    • /
    • 1995
  • According to the number of cold-rolled coils, the amount of roll wear and thermal expansion, and roll gap profile were calculated, by using the actual data from the finishing mill. Also, based on those data, the calculations of the deflection, the flattening, and the contact pressure of vwork rolls and backup rolls were made respectively. Specially, in the calculation of contact pressure, the numerical results were obtained not only during the normal rolling, but also during the abnormal rolling, by modeling mathematically the dynamic impact force which occurs when the head section of the strip is threading through rolls. With those results the growth of the fatigue region and the fatigue damage of rolls were predicted. Also the optimum roll-grinding depth was determined to maximize the roll life.

원자 현미경을 이용한 접촉 면적에 따른 마찰 및 마멸 특성 분석 (Effect of Contact Area on Friction and Wear Behavior in Atomic Force Microscope)

  • 최덕현;황운봉
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.167-173
    • /
    • 2004
  • Recently, it has been reported that frictional behavior at nanometer scale can be different from that at macro scale. In this article, friction and wear tests were conducted using an AFM to investigate the effect of real contact area on the coefficient of friction and wear property. SiO$_2$, Hica, and SiGe were used in friction test and the AFM tip was Si$_3$N$_4$. The real contact area between an AFM tip and flat surface was calculated by the Johnson-Kendall-Roberts (JKR) theory. Wear specimen was Mica, and the diamond tip was used. We found that the coefficient of friction is constant below a critical area, but it is degraded over the area. Moreover, it is found that wear depth increased rapidly from a certain load and was degraded as a function of the number of the scanning cycles. Also, the range of scanning velocity used in this study had little effect on the wear depth.

Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion

  • Zhang, Shuting;Ji, Yu;Ma, Chunhua
    • Advances in nano research
    • /
    • 제10권3호
    • /
    • pp.253-261
    • /
    • 2021
  • Polydimethylsiloxane (PDMS) is one of the most widely adopted silicon-based organic polymeric elastomers. Elastomeric nanostructures are normally required to accomplish an explicit mechanical role and correspondingly their mechanical properties are crucial to affect device and material performance. Despite its wide application, the mechanical properties of PDMS are yet fully understood. In particular, the time dependent mechanical response of PDMS has not been fully elucidated. Here, utilizing state-of-the-art PeakForce Quantitative Nanomechanical Mapping (PFQNM) together with Force Volume (FV) and Fast Force Volume (FFV), the elastic moduli of PDMS samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 Hz up to 2 kHz. Careful calibrations were done. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young's modulus was discovered with increasing acquisition frequency. It was measured 878 ± 274 kPa at 0.1 Hz and increased to 4586 ± 758 kPa at 2 kHz. The robust local probing of mechanical measurement as well as unprecedented high-resolution topography imaging open new avenues for quantitative nanomechanical mapping of soft polymers, and can be extended to soft biological systems.

래디알 동전기 휠의 다축력 특성 (Multi-axial Force Characteristics of Radial Electrodynamic Wheel)

  • 정광석
    • 융복합기술연구소 논문집
    • /
    • 제7권2호
    • /
    • pp.1-5
    • /
    • 2017
  • The rotating electrodynamic wheel over a conductive plate produces thrust force as well as normal force. Specially, separating the conductive plate and spacing apart each part, the lateral stability of the rotating wheel is guaranteed due to the restoring force into neutral position. In this paper, the force characteristics of the electrodynamic wheel rotating over the conductive plate is analyzed using the finite element tool. First, the dominant parameters are identified considering the geometric configuration and the operating condition. And the sensitivity for the parameter deviation is quantified for the high force density. The above topology can be applied as an actuating principle for inter-city train as well as contact-free transfer device.

인쇄회로기판 검사용 프로브시스템의 광학센서 (An optical sensor of a probing system for inspection of PCBs)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1742-1745
    • /
    • 1997
  • We have developed a highly responsible probing system for inspection of electrical properties of assemble PCB$_{s}$ (printed circuit boards). However, as the duration of the impact occurring between a probe and a solder joint on PCB is very short, it is very difficult to control the harmful peak impact force and the slip motion of the probe to sufficient level only by its vorce feedback control with high gains. To overcome these disadvantages of the prototype, it needs ot obtain some information of the solder joint in advance before the contact. In addition, to guarantee the reliability of the probing task, the probing system is required to measure several points around the probale target point at high speed. There fore, to meet such requirements, we propose a new noncontaet sensor capable of detecting simultaneously position and normal vectors of the multiple points around the probable target point in real time. By using this information, we can prepare a control strategy for stable contact motion on impact. In this paper, we described measuring priniciple, design, and development of the sensor. The effectiveness of the proposed sensor is verified through a series of experiments.s.

  • PDF

점성을 가진 음질이 입혀진 원형평판으로부터 의 음악복사 (A Study on the Sound Radiation from a Clamped Circular Plate with Viscoelastic layer by Impact Force)

  • 전재진;이병호
    • 한국음향학회지
    • /
    • 제6권3호
    • /
    • pp.5-16
    • /
    • 1987
  • 본 논문에서는 충격으로 인한 점탄성층을 가진 경계가 고정된 원형 평판으로부터의 음압복사에 대해 이론적, 실험적으로 연구한다. 층을 가진 평판의 운동을 모우드 해석법과 회전 관성효과와 전단력에 의한 변형을 고려한 Mindlin 의 평판이론으로부터 구한 고유치를 이용하여 구한다. 탄성구와 평판사이의 접촉력은 Hertz 이론으로 구하고 평판의 진동으로부터 복사되는 음압은 Rayleigh integral에 의해 구한다. 또한 층을 가진 평판으로부터 복사되는 음의 파형과 발생되는 음을 감소시키는 방법을 예측한다.

  • PDF

안정적 로봇 파지를 위한 인공신경망 (Artificial Neural Network for Stable Robotic Grasping)

  • 김기서;김동언;박진현;이장명
    • 로봇학회논문지
    • /
    • 제14권2호
    • /
    • pp.94-103
    • /
    • 2019
  • The optimal grasping point of the object varies depending on the shape of the object, such as the weight, the material, the grasping contact with the robot hand, and the grasping force. In order to derive the optimal grasping points for each object by a three fingered robot hand, optimal point and posture have been derived based on the geometry of the object and the hand using the artificial neural network. The optimal grasping cost function has been derived by constructing the cost function based on the probability density function of the normal distribution. Considering the characteristics of the object and the robot hand, the optimum height and width have been set to grasp the object by the robot hand. The resultant force between the contact area of the robot finger and the object has been estimated from the grasping force of the robot finger and the gravitational force of the object. In addition to these, the geometrical and gravitational center points of the object have been considered in obtaining the optimum grasping position of the robot finger and the object using the artificial neural network. To show the effectiveness of the proposed algorithm, the friction cone for the stable grasping operation has been modeled through the grasping experiments.

Process Modeling of Flexible Robotic Grinding

  • Wang, Jianjun;Sun, Yunquan;Gan, zhongxue;Kazerounian, Kazem
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.700-705
    • /
    • 2003
  • In this paper, an extended process model is proposed for the application of flexible belt grinding equipment as utilized in robotic grinding. The analytical and experimental results corresponding to grinding force, material removal rate (MRR) and contact area in the robotic grinding shows the difference between the conventional grinding and the flexible robotic grinding. The process model representing the relationship between the material removal and the normal force acting at the contact area has been applied to robotic programming and control. The application of the developed model in blade grinding demonstrates the effectiveness of proposed process model.

  • PDF