• 제목/요약/키워드: Contact mechanism

검색결과 875건 처리시간 0.035초

Conditions for manipulation of object with multiple contacts by intelligent Jig system

  • Yashima, Masahito;Kimura, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.522-525
    • /
    • 1995
  • A manipulation of a multiple contacted object by a Rotational Base and Single-jointed Finger mechanism(RBSF mechanism) is discussed. The manipulation is characterized by multiple contacts on an object and large motions of the object with sliding contacts. The kinematics and dynamics allowing sliding at multiple contacts are explored. The conditions for manipulation of an object at multiple contacts by the RBSF mechanism, which cannot exert arbitrary contact forces because it has a fewer number of joints than is required for active control, is presented.

  • PDF

간극이 있는 링크기구의 동특성 (Dynamic Characteristics of Link Mechanism with Clearance)

  • 최연선;배성준
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1050-1057
    • /
    • 1999
  • The existence of clearance at the link joint of a machine is inevitable for assembly and mobility. During the cyclic operation of a machine, rapid changes of the direction and magnitude of connection forces cause momentary loss of contact between the pin and the bushing at the link joint. Contact loss at the clearance joint gives rise to undesirable impact. The impulsive force affects on the performance of the machine, and leads to excessive vibration, noise and faster wear in the connecitons. In this paper, experiment and theoretical analysis were carried out for the variation of crank speed and clearance size. The link mechanism employed in this investigation was newly designed to check the effects of parameter changes on the occurrence of contact loss and on the magnitude of the impact force. The contact loss and impact position were calculated with various driving conditions.

  • PDF

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.989-998
    • /
    • 2023
  • Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.

골프 공의 충돌 시 스핀 생성 원리 연구 (A Study on Golf Ball Spin Mechanism at Impact)

  • 노우진;이종원
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.456-463
    • /
    • 2007
  • It is important to improve the initial launch conditions of golf ball at impact between golf club and ball to get a long flight distance. The flight distance is greatly influenced by the initial launch conditions such as ball speed, launch angle and back spin rate. It is also important to analyze the mechanism of ball spin to improve the initial conditions of golf ball. Back spin rate is created by the contact time and force. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of ball, and the tangential force creates the spin. Especially, the tangential force is known to take either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail in the literature. In this paper, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and time at impact between golf club head and ball are computed using FEM and compared with previous results. In addition, we investigate the impact phenomenon between golf club head and ball by FEM and clarify the mechanism of ball spin creation accurately, particularly focusing on the effect of negative tangential force on ball spin rate.

골프 공의 충돌 시 스핀 생성 원리 연구 (A Study on Golf Ball Spin Mechanism at Impact)

  • 노우진;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1017-1022
    • /
    • 2007
  • It is important to improve the initial launch conditions of golf ball at impact between golf club and ball to get a long flight distance. The flight distance is greatly influenced by the initial launch conditions such as ball speed, launch angle and back spin rate. It is also important to analyze the mechanism of ball spin to improve the initial conditions of golf ball. Back spin rate is created by the contact time and force. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of ball, and the tangential force creates the spin. Especially, the tangential force is known to take either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail in the literature. In this paper, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and time at impact between golf club head and ball are computed using FEM and compared with previous results. In addition, we investigate the impact phenomenon between golf club head and ball by FEM and clarify the mechanism of ball spin creation accurately, particularly focusing on the effect of negative tangential force on ball spin rate.

  • PDF

반복 미끄럼 접촉에 의한 표면층의 경화에 대한 연구 (A Study on the surface hardening by repeated sliding contact)

  • 박준목;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.80-88
    • /
    • 1997
  • Repeated sliding contact wear test was performed with copper specimens to obtain the relationship between wear and surface hardening. Wear surface and wear track section were observed by optical microscopy. Wear volume and micro-vikers hardness of sublayer below wear surface were obtained. These results suggested that wear mechanism depended on contact load than sliding velocity. Therefore wear mechanism was abrasive wear within critical contact load and adhesive wear over critical contact load. Wear rate increased with contact load, sliding distance but decreased with sliding velocity. Surface hardening increased with sliding velocity and sliding distance but decreased with contact load.

  • PDF

Characteristic Analysis of an Traveling Wave Ultrasonic Motor using a Cylindrical Dynamic Contact Model

  • Ro, Jong-Suk;Yi, Kyung-Pyo;Chung, Tae-Kyung;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1415-1423
    • /
    • 2013
  • The traveling wave ultra-sonic motor (TWUSM) is operated through the frictional force between the rotor and the stator. Hence, the contact mechanism should be analyzed to estimate the motor performance. However, the nonlinearity of the contact mechanism of the TWUSM makes it difficult to propose a proper contact model and a characteristic analysis method. To address these problems, a novel contact model is proposed and be termed the cylindrical dynamic contact model (CDCM) in this research. An estimation method of the motor performance is proposed using the CDCM, an analytical method, and a numerical method. The feasibility and usefulness of the proposed characteristic analysis are verified through experimental data.

휠-레일 접촉 알고리즘 개발 및 동역학 해석 (Developement of the Wheel-Rail Contact Algorithm and Dynamic Analysis)

  • 조재익;박태원;윤지원;김지영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.963-969
    • /
    • 2010
  • The railway vehicle consists of wires, bodies, bogies and wheelsets, and each part has very complex mechanism. In this paper, wheel-rail contact algorithm is implemented using C++ and inserted into the ODYN which is a dynamic analysis program. To analyze wheel-rail contact mechanism, information such as contact points, contact angle and rolling radius is calculated according to the wheel and rail profile. Using this information, a table for the calculation of the wheel-rail contact analysis is made according to the lateral displacement. And, the creepage and normal force are calculated and a creep force is estimated by the FASTSIM. To verify the reliability of the wheel-rail contact algorithm, results of the program are compared with the ADAMS/Rail and paper. Finally, a wheelset of the railway vehicle is modeled using ODYN and simulated static and dynamic analysis. And, to verify the reliability of the simulation results, a displacement, velocity, acceleration and force are compared with results of ADAMS/Rail.

  • PDF

4절 메카니즘을 이용한 준정적 포복 시스템에 관한 연구 (Study on quasi-static crawling system using a four bar mechanism)

  • 전용호;송낙윤;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.924-927
    • /
    • 1996
  • In this work, we investigate the quasi-static crawling of the four-bar mechanism. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpuse, we introduce the concept of imaginary joints to find these forces. Therefore, we are able to treat the closed mechanism as a serial one. Also, sliding conditions of the mechanism in quasi-static equilibrium are examined. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism but with a fixed ground friction are investigated.

  • PDF

4절 메커니즘을 이용한 준정적 포복 시스템 (Quasi-Static Crawling System Using a Four Bar Mechanism)

  • 김해수;김민건;임남식;김희국;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.226-232
    • /
    • 2002
  • In this work, the quasi-static crawling of the four-bar mechanism is investigated. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpose, we introduce the concept of imaginary joints to find these forces and treat the closed mechanism as a serial one. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism on a flat ground with uniform friction coefficient, based on sliding conditions of the mechanism in quasi-static equilibrium, are investigated.