• 제목/요약/키워드: Contact configuration

검색결과 218건 처리시간 0.024초

해빙시스템에 의한 전차선의 온도변화에 관한 연구 (A Study on Temperature Variation of Contact Wire by De-icing System)

  • 안병립;이주
    • 조명전기설비학회논문지
    • /
    • 제22권9호
    • /
    • pp.69-74
    • /
    • 2008
  • 동절기 전차선의 서리와 결빙은 매우 심각한 문제를 발생시킬 수 있다. 팬터그래프의 집진 스트립의 기계적 표면과 전차선 사이에 서리 또는 결빙으로 인한 아크가 발생하게 된다. 이에 따른 전기적 저항은 팬터그래프와 전차선 사이의 전류의 풀질을 감소시킨다. 해빙시스템은 통절기 전차선의 서리와 결빙을 녹이는 역할을 한다. 해빙시스템의 원리는 전차선의 임피던스의 Joule열을 이용하여 서리와 결빙을 제거하는 것이므로 전차선의 온도는 인가전류가 증가할수록 증가하였으며, 풍속이 증가할수록 감소하는 것을 알 수 있었다.

은 박막이 코팅된 표면에서 물질전이층의 형성 및 그 트라이볼로지적 역할에 관한 연구 (A Study on the Formation and the Tribological Role of Mass Transfers Layers at Rubbing Silver-coated Surface)

  • 공호성;양승호;윤의성;김대은
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.377-383
    • /
    • 2002
  • The tribological role of mass transfer layer was studied with silver coatings under various ranges of load and sliding speed. Silver coating was performed with a functionally gradient coating method. Tests were per-formed in dry sliding conditions, using a ball-on-disk contact configuration, at the load of 0.0196-17.64 N and the sliding speed of 20-1,000 mm/s in ambient air. Optical microscope and EPMA analyses showed that contact surfaces were covered with the mass transfer layers of agglomerated wear particles depending upon the contact conditions, and they greatly influenced the tribological characteristics of the surfaces. However, the formation of mass transfer layer was suppressed as the sliding speed increased, and above a critical sliding speed, no mass transfer layer was able to form. For building up a general framework of triboiogical behavior of the coated silver films, all test data were summarized on a map whose axes are contact pressure and sliding speed.

설계변수에 따른 진공인터럽터용 종자계방식 전극의 아크특성에 관한 연구 (A Study on the Arc Characteristics of Axial Magnetic Field Type Electrode for Vacuum interrupter by Desing Parameters)

  • 김성일;박흥태;안희일;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.672-674
    • /
    • 2001
  • Axial magnetic field(AMF) type electrode can increase the interrupting capability of vacuum interrupters. But, this interrupting capability vary with design parameters such as shape of electrode, slits of contact, material of contact and so on. In this paper, shown arc characteristics of unipolar axial magnetic field type electrode for vacuum interrupter by design parameters such as shape of contact slits and diameter of contact. And, confirmed vacuum arc configuration by individual design parameter using high speed camera.

  • PDF

마찰력을 고려한 로봇의 가속도 타원 해석 (Acceleration Ellipsoid of Multiple Cooperating Robots with Friction Contact)

  • 이원희
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.887-898
    • /
    • 2004
  • In this paper a mathematical framework fur deriving acceleration bounds from given joint torque limits of multiple cooperating robots are described. Especially when the different frictional contacts for every contact are assumed and the torque limits are given in 2-norm sense, we show that the resultant geometrical configuration for the acceleration is composed of corresponding parts of ellipsoids. Since the frictional forces at the contacts are proportional to the normal squeezing forces, the key points of the work includes how to determine internal forces exerted by each robot in order not to cause slip at the contacts while the object is carried by external forces. A set of examples composed of two robot systems are shown with point-contact-with-friction model and insufficient or proper degree of freedom robots.

댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증 (Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires)

  • 김성대;김원진;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.460-465
    • /
    • 2002
  • The nonlinear vibration of the CRT shadow mask is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the shadow mask is obtained from dynamic condensation for the mass and stiffness matrices. Damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask with damping wires, the‘design of experiments’technique is applied to search fur the optimal damping wire configuration so that the vibration attenuation of the shadow mask is maximized.

  • PDF

Numerical simulation of concrete slab-on-steel girder bridges with frictional contact

  • Lin, Jian Jun;Fafard, Mario;Beaulieu, Denis
    • Structural Engineering and Mechanics
    • /
    • 제4권3호
    • /
    • pp.257-276
    • /
    • 1996
  • In North America, a large number of concrete old slab-on-steel girder bridges, classified noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder interface contact and friction on the steel girders was totally neglected in practice. Experimental results indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these bridges. In this paper, the two major components-concrete slab and steel girders, are treat as two deformable bodies in contact. A finite element procedure with considering the effect of friction and contact for the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon and finite element formulation are described using an updated configuration under large deformations to account for the influence of any possible kinematic motions on the interface boundary conditions. The constitutive model for frictional contact are considered as slip work-dependent to account for the irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure is further validated by experimental bridge models.

컨피규레이션 공간을 이용한 기구학적 공차 설계 (Kinematic Tolerance Synthesis Using Generalized Configuration Spaces)

  • 경민호
    • 한국CDE학회논문집
    • /
    • 제10권4호
    • /
    • pp.284-292
    • /
    • 2005
  • This paper presents a new framework of kinematic tolerance synthesis and describes the implemented algorithm for planar mechanical systems comprised of higher kinematic pairs. Input to the synthesis algorithm is a parametric model of the mechanical system with allowed parameter ranges (tolerance ranges). The model is specified as the part profiles consisting of line and arc segments and the motion axes along which each part moves. The algorithm analyzes tolerance in generalized configuration space, called contact zones bounding the worst-case variations, and identifies bad system variations. The bad system variations then are removed out of the parameter ranges by adjusting the nominal parameter values if possible and then shrinking the ranges otherwise. This cycle is repeated until no more bad variations we found. I show the effectiveness of the algorithm by case studies on several mechanisms.

가변 형상 무한 궤도 차량의 성능 해석 및 설계 (Design and Performance Analysis of a Variable Configuration Tracked Vehicle)

  • 김한호;곽윤근
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.20-27
    • /
    • 2001
  • A variable configuration tracked vehicle(VCTV) is developed to reduce turning energy and improve climbing ability for stairs. This mechanism has four track T-type frames. By changing the driving direction, each track T-type frame rotates to minimize the contact area with ground. It also has better performance than other VCTV in energy consumption of turning. Futhermore this mechanism is more stable than other VCTV on the rough terrain. When climbing stairs, each track T-type frame rotates to obtain a front attack angle and keep stability on steep stairs. The design parameters of components of track T-type frames are optimized to enhance the performance of climbing stairs. Performance indices include a stable angle, a climbing ability, a height of the vertical obstacle. In case that the overall length of the mechanism is 0.2m, it is required that the radius of the wheels should be 5mm and the length track contacted with he ground should be 0.09m to climb higher and steeper stairs.

  • PDF

3차원 유한요소 해석을 이용한 배선용 차단기의 전자반발력 계산 (Calculation of Electrodynamic Repulsion Force in Molded Case Circuit Breakers Using the 3-D Finite Element Analysis)

  • 김용기;박홍태;송중천;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.137-140
    • /
    • 2003
  • To the optimization design of molded case circuit breakers(MCCBs), it is necessary and important to calculate the electro-dynamic repulsion force acting on the movable conductor. With 3-D finite element nonlinear analysis, according to the equations among current-magnetic field-repulsion force and taking into account the ferromagnet, contact bridge model is introduced to simulate the current constriction between contacts, so Lorentz and Holm force acting on the movable conductor and contact, respectively, can be integrated to calculate. Coupled with circuit equations, the opening time of movable contact also can be obtained using iteration with the restriction of contact force. Simulation and experiment for repulsion forte and opening time of five different configuration models have been investigated. The results indicate that the proposed method is effective and capable of evaluating new design of contact systems in MCCBs.

  • PDF

Characterization of a LSCF/GDC Cathode Composite in Solid Oxide Fuel Cells Using Impedance Spectroscopy

  • Hwang, Jin-Ha;Lee, Byung-Kook
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.793-799
    • /
    • 2005
  • A composite cathode of LSCF$(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3)\;and\;GDC\; (Gd_2O_3-doped\;CeO_2:Ce_{0.9}Gd_{0.1}O_{1.95_})$ was characterized in terms of an electrode response, using a point contact in an Yttria-Stabilized Zirconia (YSZ) electrolyte incorporated into AC two-point impedance spectroscopy. The point-contacted configuration amplifies the responses occurring near the YSZ/cathode interface through the aligned point contact on the planar LSCF/GDC electrode. The point contact interface increases the bulk resistance allowing the estimation of the point contact geometry and resolving the electrode-related responses. The resultant impedance spectra are analyzed through an equivalent circuit model constructed by resistors and constant phase elements. The bulk responses can be resolved from the electrode-related portions in terms of spreading resistance. The electrode-related polarizations are measured in terms of temperature and oxygen partial pressure. The modified impedance spectroscopy is discussed in terms of methodology and analytical aspects, toward resolving the electrode-polarization issues in solid oxide fuel cells.