• Title/Summary/Keyword: Contact conditions

Search Result 1,953, Processing Time 0.035 seconds

Effect of Water Contamination of the Lubricant and Surface Roughness of Bearing Steel on the Rolling Contact Fatigue Life (윤활유의 수분혼입 및 베어링강의 표면 조도가 구름접촉 피로수명에 미치는 효과)

  • Heo, Tae Hyeon;Sim, Chung-Ki;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • A large amount of research has been performed on the rolling contact fatigue(RCF) life of bearings, since it directly affects the safety and reliability of mechanical systems. It is well known that rolling contact fatigue life is influenced by several parameters including contact pressure, oil contamination by water or metal particles, and the surface conditions of bearings. However, the detailed damage mechanisms involved in rolling contact fatigue have not been clearly identified yet. In this paper the effects of water contamination of the lubricant and surface roughness of bearing steel on the rolling contact fatigue life were investigated. Two types of specimens with different surface roughness values were prepared through turning and lapping operations. They were tested under two different lubrication conditions, i.e. oil lubricant with 100% of oil and the water contaminated condition with 80% of oil and 20% of water using the rolling contact fatigue testing machine. The surface damage induced by the rolling contact fatigue was observed by using atomic force microscope(AFM). Experimental results show that the rolling contact fatigue life, $L_{10}$ was reduced by 24 to 33% depending on the lubrication condition. The reduction of fatigue life in the range of 53 to 57% was also observed at different surface roughness conditions.

The Comparision of the Static Balance, Contact Area, and Plantar Pressure of Flexible Flat Foot According to Elastic Taping

  • Hyeon-Seong Joo;Sam-Ho Park;Myung-Mo Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.421-429
    • /
    • 2022
  • Objective: The purpose of this study was to compare and analyze the effects of arch support taping on static balance, static/dynamic foot contact area, and ground reaction force during walking according to the types of elastic tapes with mechanical elasticity differences. Design: Cross-sectional study Methods: Twenty-six participants selected for flexible flat feet through the navicular drop test were randomly assigned to non-taping, Dynamic-taping, and Mechano-taping conditions. Static balance and foot contact area were compared in the standing posture according to arch support taping conditions, and foot contact area and ground reaction force were compared during walking. Results: There was no significant difference in static balance according to the taping condition in the standing position, but the foot contact area in the Mechano-taping condition showed a significant decrease compared to the non-taping condition (p<0.05). The foot contact area during walking significantly decreased in the Dynamic-taping and Mechano-taping conditions (p<0.05), but there was no significant difference between the ground reaction force. Conclusions: Based on the results of this study, it was confirmed that among the types of elastic taping, arch support taping using dynamic taping and Mechano-taping has the effect of supporting the arch with high elastic recovery. Any type of elastic tape can be used for arch alignment in flexible flat foot.

Dynamic Manipulability for Cooperating Multiple Robot Systems (공동 작업하는 다중 로봇 시스템의 동적 조작도)

  • 심형원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.930-939
    • /
    • 2004
  • In this paper, both dynamic constraints and kinematic constraints are considered for the analysis of manipulability of robotic systems comprised of multiple cooperating arms. Given bounds on the torques of each Joint actuator for every robot, the purpose of this study is to drive the bounds of task-space acceleration of object carried by the system. Bounds on each joint torque, described as a polytope, is transformed to the task-space acceleration through matrices related with robot dynamics, robot kinematics, object dynamics, grasp conditions, and contact conditions. A series of mathematical manipulations including the procedure calculating minimum infinite-norm solution of linear equation is applied to get the reachable acceleration bounds from given actuator dynamic constrains. Several examples including two robot systems as well as three robot system are shown with the assumptions of complete-constraint contact model(or' very soft contact') and insufficient or proper degree of freedom robot.

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

Dependence of contact resistance in SiC device by annealing conditions (어닐링 조건에 의한 SiC 소자에서 콘택저항의 변화)

  • Kim, Seong-Jeen
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.467-472
    • /
    • 2021
  • Stable operation of semiconductor devices is needed even at high temperatures. Among the structures of semiconductor devices, the area that can cause unstable electrical responses at high temperatures is the contact layer between the metal and the semiconductor. In this study, the effect of annealing conditions included in the process of forming a contact layer of nickel silicide(NiSix) on a p-type SiC layer on the specific contact resistance of the contact layer and the total resistance between the metal and the semiconductor was investigated. To this end, a series of electrodes for TLM (transfer length method) measurements were patterned on the 4 inch p-type SiC layer under conditions of changing annealing temperature of 1700 and 1800 ℃ and annealing time of 30 and 60 minutes. As a result, it was confirmed that the annealing conditions affect the resistance of the contact layer and the electrical stability of the device.

Dynamic Contact Analysis Satisfying All the Compatibility Conditions on the Contact Surface (접촉면에서 모든 적합조건을 만족시키는 동적인 접촉현상의 해법)

  • 이기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1243-1250
    • /
    • 1995
  • For the numerical solution of frictional dynamic contact problems, correct contact points and displacements are determined by iteratively reducing the displacement error vector monotonically toward zero And spurious oscillations are prevented from the solution by enforcing the velocity and acceleration compatibilities of the contact points with the corresponding error vectors. Numerical simulations are conducted to demonstrate the accuracy of the solution and the necessity of the velocity and acceleration compatibilities on the contact surface.

A Study on the Wear Performances of Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate under Sliding and Rolling Contacts (미끄럼 및 구름접촉하에서 Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate의 마모성는에 관한 연구)

  • 최웅수;한흥구;권오관
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.40-45
    • /
    • 1991
  • Wear performances for dibutyl 3,5-di-t-butyl 4-hydroxy benzyl phosphonate (DBP) were invesitigated using the four ball test machine under sliding and also rolling contact conditions, and compared with ZDDP. DBP showed excellent antiwear performace compared with ZDDP under severe sliding contact. Also, DBP achieved a longer fatigue life than ZDDP under rolling contact conditions. The surface of the worn balls was observed using an optical microscope, and the wear derbis generated was measured using the Particle Quantifier (PQ).

Conditions for manipulation of object with multiple contacts by intelligent Jig system

  • Yashima, Masahito;Kimura, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.522-525
    • /
    • 1995
  • A manipulation of a multiple contacted object by a Rotational Base and Single-jointed Finger mechanism(RBSF mechanism) is discussed. The manipulation is characterized by multiple contacts on an object and large motions of the object with sliding contacts. The kinematics and dynamics allowing sliding at multiple contacts are explored. The conditions for manipulation of an object at multiple contacts by the RBSF mechanism, which cannot exert arbitrary contact forces because it has a fewer number of joints than is required for active control, is presented.

  • PDF

Advanced Sorting Conditions Modeling of Frictional Force

  • Cho, Yong-Hee;Lee, Jeong-Wook;Chang, Yong-Hoon;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.439-443
    • /
    • 2004
  • In this research, we describe the sorting conditions modeling by friction force. As in any mechanism which is required to provide good dynamic performance and high accuracy, performance evaluation of optimal control. To understand friction it is necessary to investigate the topography of the sliding surfaces in contact. Any surfaces, even apparently smooth surfaces, are microscopically rough. When two surfaces come into contact, the true contact takes place only at point where asperities come together. The sorting conditions of sorting mechanism with friction force is sorting force must be equal with force can sorting one highest veneer among loaded veneer. This is just a thing being sorted veneer have friction with under veneer and this friction disturb sorting at the same time. Hence, the sorting conditions evaluation is important to sorting one veneer must get under control friction with veneer.

  • PDF