• Title/Summary/Keyword: Contact behavior

Search Result 1,450, Processing Time 0.026 seconds

Forming Characteristics for the Bundle Extrusion of Cu-Ti Bimetal Wires (구리-타이타늄 복합선재의 번들압출 성형특성)

  • Lee, Y.S.;Kim, J.S.;Yoon, S.H.;Lee, H.Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.342-346
    • /
    • 2009
  • Forming characteristics for the bundle extrusion of Cu-Ti bimetal wires are investigated, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

Development of A Process Map for Bundle Extrusion of Cu- Ti Bimetal Wires (구리-타이타늄 이중미세선재 번들압출의 공정지도 개발)

  • Kim J. S.;Lee Y. S.;Yoon S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.393-397
    • /
    • 2005
  • A process map has been developed, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion fur pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

  • PDF

Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation (시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

TCC behavior of a shell phase in core/shell structure formed in Y-doped BaTiO3: an individual observation (Yttrium이 첨가된 BaTiO3에서 형성된 core/shell 구조에서 shell의 TCC 거동: 독립적 관찰)

  • Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.110-116
    • /
    • 2020
  • Grains in the BaTiO3, which is used for a dielectric layer in MLCC(Multi-Layer Ceramic Capacitor) are necessary to form core/shell structure for a stable TCC(Temperature Coefficient of Capacitance) behavior. The shell property has been deduced from the whole TCC behavior of core/shell structure due to its tiny size, ~ few ㎛. This study demonstrates the individual TCC behavior of the shell phase measured by micro-contact measurement in a temperature range between 35 and 135℃. Pt electrode pairs deposited on an enlarged core/shell structure in a diffusion couple sample made the measurement possible. As a result, the DPT (Diffusion Phase Transition) behavior of the shell phase was revealed as a different TCC behavior from that of the core: a broad peak with Tm at 65℃. This would be also useful experimental data for a modelling that depicts dielectric-temperature behavior of core/shell structure.

Temperature Dependent Behavior of Thermal and Electrical Contacts during Resistance Spot Welding

  • Kim, E.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The thermal contact conductance at different temperatures and with different electrode forces and zinc coating morphology was measured by monitoring the infrared emissions from the one dimensionally simulated contact heat transfer experiments. The contact heat transfer coefficients were presented as a function of the harmonic mean temperature of the two contacting surfaces. Using these contact heat transfer coefficients and experimentally measured temperature profiles, the electrical contact resistivities both for the faying interface and electrode-workpiece interface were deduced from the numerical analyses of the one dimension simulation welding. It was found that the average value of the contact heat transfer coefficients for the material with zinc coating (coating weight from 0 g/$mm^2$to 100 g/$mm^2$) ranges from 0.05 W/$mm^2$$^{\circ}C$ to 2.0 W/$mm^2$$^{\circ}C$ in the temperature range above 5$0^{\circ}C$ harmonic mean temperature of the two contacting surfaces. The electrical contact resistivity deduced from the one dimension simulation welding and numerical analyses showed that the ratio of electrical contact resistivity at the laying interface to the electrical contact resistivity at the electrode interface is smaller than one far both bare steel and zinc coated steel.

  • PDF

Space Elements as the Correspondent Elements with the Social Behavior Patterns in the Housing Unit (단일주거 내 거주자의 사회적 행위패턴에 대응하는 공간조절 요소)

  • 전남일
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.3
    • /
    • pp.21-40
    • /
    • 2002
  • The aim of this interdisciplinary study is to understand the relationship between the social behavior patterns and space elements, specially micro-housing sociological point of view. It analyzed korean typical floorplans in the apartment housing, focused on the 4-criteria contact or isolation between the individual persons, communication between the generations, hierarchy of the gender and socialization with neighbourhood. It determinate concrete space elements involved correspondent factors with users' social behavior. By reviewing those factors found, it is suggested also the planning concept, that response users' social orientation. As the practical alternatives, some prototypes have been developed not only for improvement of housing plans, but also for resonable housing supply and sustainable usage.

Wear behavior of SM55C steel by rolling contact (구름접촉에 의한 SM55C의 마멸 거동)

  • Park, Beom-Su;Chae, Young-Hun;Kim, Seock-Sam
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.240-247
    • /
    • 2002
  • The rolling wear behavior of SM55C is investigated under lubrication. This is a comparative tribological behavior of heat treatment effect for SM55C. Rolling wear test method is used for Ball-on-disk type. Specimens can be classified into two main groups: as-annealing and non-annealing. As result of wear behavior, flanking initial time of non-annealing specimen keep at retard but it have not under high normal load. One of the notable features of annealing specimen is steady flanking initial time for a normal load in this experiment. Failure mechanism of SM55C is due to the fatigue wear such like flanking, pitting etc.. Flanking leads to abruptly fracture of worn surface. Fracture mechanism has a connection with normal load and polishing direction of specimens.

  • PDF

Nanotribological Behavior of Adsorbed Water Layer on Silicon Surface (실리콘 표면에 흡착된 수분층의 나노트라이볼로지 거동)

  • 안효석;김두인;최동훈
    • Tribology and Lubricants
    • /
    • v.19 no.5
    • /
    • pp.245-250
    • /
    • 2003
  • Water is known to playa crucial role on friction of moving parts in nanoscale contact. Little is, however, known about the tribological behavior of a solid surface that is covered with water adsorption layer. The objective of this study is to investigate the nanotribological behavior of the water layer in relation to water affinity of the surface and relative humidity. This paper presents an examination of the frictional behavior of water adsorption layer as 'confined liquid film'. It is shown that the friction is inversely proportional to the hydrophilicity of surface and relative humidity. On the other hand, friction of hydrophobic surface is not influenced by relative humidity. A model is proposed for the water-mediated contact in which it is shown that the water layer between two hydrophilic surfaces with high relative humidity behaves as a lubricant.

Effect of MML on the Wear Behavior of Al/SiCp Composites (Al/SiCp 복합재료의 마모거동에 미치는 MML의 영향)

  • Kim, Yeong-Sik;Kim, Kyun-Tak
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • Al-based composites reinforced with SiC particulate were fabricated using a thermal spray process, and dry sliding wear behavior of the composites was investigated. Pre-mixed Al and SiC powders were sprayed on an A16061 substrate by flame spraying, and dry sliding wear test were performed under various sliding speed and applied load conditions against ${Al_2}{O_3}$ ball. Wear behavior of the composites was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). And build-up mechanism of MML on the worn surface of the composites was examined. It was revealed that these MML was formed of debris from the contact surface of the composites and effected to wear behavior of the composites protecting the contact surface of the composites.

On the Contact Behavior Analysis of an O-ring Seal using NBR and FFKM (NBR and FFKM O-링시일의 접촉거동 해석에 관한 연구)

  • 고영배;황준태;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.194-200
    • /
    • 2000
  • The sealing performance of an elastomeric O-ring seal using NBR and FFKM has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry(grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to materials of NBR and FFKM and temperature of vaccum chamber.

  • PDF