• Title/Summary/Keyword: Contact angle (CA)

Search Result 45, Processing Time 0.027 seconds

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

DIMENSIONAL STABILITY AND WETTABILITY OF RUBBER IMPRESSION MATERIALS (고무 인상재의 크기 안정성 및 친수성에 관한 연구)

  • Kang Choong-Hee;Vang Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.233-245
    • /
    • 1992
  • The purpose of this study was to evaluate the demensioal stability and wettability of several rubber impression materials. Impressions were made from a metal master die machined to stimulate five full veneer crown preparations symmetrically placed in an arch form. Cast from impressions were measured about ; 1) intrapreparation distance 2) lower base diameter 3) length. For comparing materials were formed against a smooth surface. The advancing contact angle of a saturated aqueous solution of $CaSO_4$ on the impression materials was measured after 1 minute. Mean contact angle were calculated and results were analyzed. Results were as follows : 1. As the intrapreparation distance, hydrophilic addition-cured silicone had the smallest change and condensation-cured silicone had the largest one. 2. As the lower base diameter, traditional addition-cured silicone had the smallest change and polyether had the largest one. 3. As the height, traditional addition-cured silicone had the smallest change and polyether had the largest one. 4. As the contact angle, polyether had the smallest change and condensation-cured silicone had the largest one.

  • PDF

Phase Transition of Octaneselenolate Self-assembled Monolayers on Au(111) Studied by Scanning Tunneling Microscopy

  • Choi, Jung-Seok;Kang, Hun-Gu;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2623-2627
    • /
    • 2011
  • We investigated the surface structure and wetting behavior of octaneselenolate self-assembled monolayers (SAMs) on Au(111) formed in a 50 ${\mu}M$ ethanol solution according to immersion time, using scanning tunneling microscopy (STM) and an automatic contact angle (CA) goniometer. Closely-packed, well-ordered alkanethiol SAMs would form as the immersion time increased; unexpectedly, however, we observed the structural transition of octaneselenolate SAMs from a molecular row phase with a long-range order to a disordered phase with a high density of vacancy islands (VIs). Molecularly resolved STM imaging revealed that the missing-row ordered phase of the SAMs could be assigned as a $(6{\times}{\surd}3)R30^{\circ}$ superlattice containing three molecules in the rectangular unit cell. In addition, CA measurements showed that the structural order and defect density of VIs are closely related to the wetting behaviors of octaneselenolate SAMs on gold. In this study, we clearly demonstrate that interactions between the headgroups and gold surfaces play an important role in determining the physical properties and surface structure of SAMs.

Surface Modification Method of Stainless Steel using Electrochemical Etching (전기화학적 에칭을 이용한 스테인리스 스틸의 표면 개질)

  • Lee, Chan;Kim, Joonwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-358
    • /
    • 2014
  • This paper reports a simple, yet effective 1-step surface modification method for stainless steel. Electrochemical etching in dilute Aqua Regia forms hierarchical micro and nanoscale structure on the surface. The surface becomes highly hydrophobic (${\sim}150^{\circ}$) as a result of the etching in terms of static contact angle (CA). However the liquid drops easily pinned on the surface because of high contact angle hysteresis (CAH), which is called a "petal effect": The petal effect occur because of gap between surface microstructures, despite of intrinsic hydrophobicity of the base material. The pore size and period of surface structure can be controlled by applied voltage during the etching. This method can be applied to wide variety of industrial demand for surface modification, while maintaining the advantageous anti-corrosion property of stainless steel.

Effect of Surface Modification of Calcium Carbonate Nanoparticles by Octyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 옥틸트리메톡시실란에 의해 표면 개질된 탄산칼슘 나노입자가 에멀젼 및 기포 안정성에 미치는 영향)

  • Lim, Jong Choo;Park, Ki Ho;Lee, Jeong Min;Shin, Hee Dong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.386-393
    • /
    • 2022
  • In this study, the surface modification of calcium carbonate (CaCO3) nanoparticles by a silane coupling agent, octyltrimethoxysilane (OTMS), was investigated and characterized using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) analysis. Both floating tests and contact angle measurements were also conducted to study the effect of OTMS concentration on the hydrophobicity of CaCO3 nanoparticles. It was found that the active ratio for the CaCO3 nanoparticles modified by 1 wt% of OTMS was 97.0 ± 0.5%, indicating that OTMS is a very effective silane coupling agent in enhancing the hydrophobicity of the CaCO3 nanoparticle surface. The most stable foam was generated with 1 wt% of CaCO3 nanoparticles in aqueous solutions at 1 wt% of OTMS, where the contact angle of water was found to be 91.8 ± 0.7°. It was also found that the most stable emulsion drops were formed at the same OTMS concentration. These results suggest that CaCO3 nanoparticles modified by a silane coupling agent OTMS are a powerful candidate for a foam stabilizer or an emulsifier in many industrial applications.

Fabrication of Superoleophobic Surface with Anisotropic Wettability Using Silicon Wafer (실리콘 웨이퍼를 이용한 이방성의 젖음성을 가지는 초소유성 표면 제작)

  • Lee, Dong-Ki;Lee, Eun-Haeng;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2014
  • We fabricated grooved mushroom structures with anisotropic wettability on silicon substrates using basic MEMS processes. The geometry of these grooved mushroom structures could be changed by controlling the additional IPA solution during Si etching by TMAH solution. To understand anisotropic wettability, contact angles (CAs) of hexadecane droplets were measured in the orthogonal and parallel directions to grooved lines. The CA measurement results displayed anisotropic wetting on the grooved mushroom structures. However, specimens with $80{\mu}m$ distance between top layers displayed isotropic and superoleophobic wetting. This study demonstrates that the thickness of the top layer is more critical than the width or height of the ridge when determining the wettability of organic solvent. Despite the wide distance between top layers ($80{\mu}m$), the specimen with a thin top layer (100 nm) showed highly anisotropic wetting and low CA due to the pinning of droplets at the edge of the top layer.

The Study on the Early Diagnosis of Injuries for Needles of Conifer by Acid Rain and Air Pollutants (산성비 및 대기오염물질이 침엽수 잎에 미치는 피해의 조기판단에 관한 연구)

  • 이경재;송근준;김선희;이윤원
    • Korean Journal of Environment and Ecology
    • /
    • v.7 no.2
    • /
    • pp.252-269
    • /
    • 1994
  • This study was conducted to the early diagnosis of injuries on needles of conifer by acid rain and air pollutants in metropolitan area, Korea. It was executed to calculate of injured index, contact angle measurement, nutrient content analysis in needles, analysis of soil chemical properties from June 1990 to June 1991. The sensitive species (Picea abies, Abies holophylla) for acid rain and air pollutants were used as the study materials. And the results from this study were as follows : Degree of Injured index was divided into three groups in June 1990. The first group (not injured sites) was Kwangnung and Yangpyung. The Second group (slight injured sites) was Inchon, Boramae Park, Kwachun, Seoul Women's Univ., Anyng, and Yangsuri. The third group (serious injured sites) was Namsan, Seoul City Univ., Children's Park, and Kumgok Royal Tomb. But, Inchon, Kwachon area were changed from slight injured areas to serious injured areas in December 1990. As time goes on, the degree of injured gets worse. In contact angle analysis, value of December 1990 was lower than that of June 1990, especially, that of two-year-needle were lower than of one-year-needle. The correlation between injured Index and contact angle was significantly negative. In the result of needle nutrients analysis of Picea abies, Abies hozophylla, Ca, Mg, K contents was higher in December 1990 than that in June 1991 and that of one-year-needle were prominantly higher than that of two-year-needle. In case of wax quantity analysis in injured area, the older the leaf age is, the smaller the contented wax quantity is. In injured area, the higher a leaf age is, the much that of index is. As a result, the method of analysis referred in the former, is applied by a complementary cooperation. That of method is done sustainably in the future, the correct results will be expected.

  • PDF

A Study on Wettability of Silicate Glasses on the Different Impurities in Alumina Substrates (알루미나의 순도에 따른 알루미나와 실리케이트계 유리와의 젖음성에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.122-128
    • /
    • 1998
  • This investigation was performed to collect fundamental informations concerning the behavior of glass solders on ceramic joining process. The wettability of glasses on two types of alumina was evaluated by sessile drop method. SiO$_2$-CaO-Al$_2$O$_3$system glasses were selected as solder glasses, and alumina that have different purities were used for substrate materials. It is indicated that contact angles of glasses on 99% purity of alumina substrate do not change as increasing time at elevated temperature, however the contact angles on the 92% purity of alumina substrate exhibit the strong time dependency. The time-dependent property on 92% alumina was due to the interlayer reactions occurred between the glass solder and impurities on the substrate.

  • PDF

Thermally/Dynamically Stable Superhydrophobic ZnO Nanoparticles on Various Substrates

  • Lee, M.K.;Kwak, G.J.;Yong, K.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.360-360
    • /
    • 2011
  • We demonstrated the fabrication method of superhydrophobic nanocoating through a facile spin-coating and the chemical modification. The resulting coating showed a tremendous water repellency with a static water contact angle (CA) of 158$^{\circ}$ and a hysteresis of 1$^{\circ}$. The number of ZnO nanoparticle (NP) coating cycles affected on the surface roughness, which is key role for superhydrophobic surface, and thus the CA can be modulated by changing the ZnO NP coating cycles. The CA can be controlled by changing the carbon length of Self-Assembled Monolayers(SAM). This simple ZnO coating is substrate-independent including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below 250$^{\circ}C$ and under dynamic conditions.

  • PDF

Synthesis of Pd-decorated SiO2 layers with superhydrophobic and oleophilic micro-nano hierarchical (초소수성 및 친유성을 갖는 마이크로-나노 계층구조의 Pd 금속입자 기능화된 SiO2층 합성)

  • Kim, Jae-Hun;Lee, Jae-Hyeong;Kim, Jin-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.67.2-67.2
    • /
    • 2017
  • 본 연구에서는 $SiO_2$ 미세구조 상에 Pd 나노입자(NPs)를 증착하여, 불소화된 마이크로-나노 계층구조를 갖는 Pd-decorated $SiO_2$($Pd/SiO_2$)를 제작하였다. 마이크로 크기의 거칠기를 갖는 $SiO_2$ 층은 졸-겔 공정을 사용해서 제조된 용액을 전기분사함으로써 제조되었다. 이어서, 자외선(UV)을 이용한 광 환원법을 이용해 Pd 나노입자를 $SiO_2$ 층에 형성했다. 생성된 표면은 마이크로-나노의 계층구조 형태를 보여주었다. 해당 시편의 불소화 처리 후, 마이크로-나노의 계층구조 표면은 $170^{\circ}$ 이상의 물 접촉각(water contact angle; WCA) 및 $5^{\circ}$ 이하의 슬라이딩 각(sliding angle)을 보여줌으로써 물에 대해 탁월한 소수성을 나타내었다. 또한, 커피($CA=161^{\circ}$), 우유($CA=162^{\circ}$), 쥬스($CA=163^{\circ}$), 그리고 글리세롤($CA=165^{\circ}$)에 대해서도 우수한 소수 특성을 보여주었다. 또한, 이들 $Pd/SiO_2$ 층은 우수한 장기내구성 및 자외선 저항성을 보여주었다. 그리고 이어진 기름에 대한 접촉각 측정을 통해 해당 시편이 소유 특성이 아닌 친유 특성을 보여준다는 것을 확인할 수 있었고, 기름에 대한 CA는 약 ${\sim}10^{\circ}$로 매우 우수한 친유 특성을 나타내었다. 이와 같은 결과는 자체세정이 가능한 표면 및 지능형 물/기름 분리 시스템과 같은 스마트 장치에서 초소수성-친유성 특성을 갖는 계층구조의 $Pd/SiO_2$ 층을 사용할 가능성을 명확하게 보여준다고 판단된다.

  • PDF