• 제목/요약/키워드: Contact Surface

검색결과 4,569건 처리시간 0.035초

Kurtosis를 고려한 3차원 거친 표면의 탄성접촉해석 (The Elastic Contact Analysis of 3D Rough Surface of Nongaussian Height Distribution)

  • 김태완;구영필;조용주
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.53-60
    • /
    • 2001
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have the nongaussian height distribution. So, in this study, contact simulations are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface considering the kurtosis is generated numerically And the effects of kurtosis on real contact area fraction, average gap, and mean asperity contact pressure are studied. It will be shown that the real contact area fraction and the mean asperity contact pressure are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

거친 표면간의 미세 접촉에서의 표면력 해석 (Analysis of Surface Forces in Micro Contacts between Rough Surfaces)

  • 김두인;안효석;최동훈
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구 (Study on the Fatigue Crack Initiation Life uncle]r 3-Dimensional Rough Contact)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.160-166
    • /
    • 2002
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on the morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate clack initiation life in the substrate, dislocation pileup theory was used.

3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구 (Study on the Fatigue Crack Initiation Life under 3-Dimensional Rough Contact)

  • 이문주;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.72-79
    • /
    • 2000
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on tile morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate crack initiation life in the substrate, dislocation pileup theory was used.

  • PDF

로봇 손에 의한 자유곡면 물체의 파지 및 조작에 관한 운동학 (Kinematics of Grasping and Manipulation of Curved Surface Object with Robotic Hand)

  • 황창순
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.1-13
    • /
    • 2005
  • Kinematics of grasping and manipulation by a multi-fingered robotic hand where multi-fingertip surfaces are in contact with an object is solved. The surface of the object was represented by B-spline surfaces in order to model the objects of various shapes. The fingers were modeled by cylindrical links and a half ellipsoid fingertip. Geometric equations of contact locations have been solved for all possible contact combinations between the fingertip surface and the object. The simulation system calculated joint displacements and contact locations for a given trajectory of the object. Since there are no closed form solutions for contact or intersection between these surfaces, kinematics of grasping was solved by recursive numerical calculation. The initial estimate of the contact point was obtained by approximating the B-spline surface to a polyhedron. As for the simulation of manipulation, exact contact locations were updated by solving the contact equations according to the given contact states such as pure rolling, twist-rolling or slide-twist-rolling. Several simulation examples of grasping and manipulation are presented.

반복 미끄럼 접촉에 의한 표면층의 경화에 대한 연구 (A Study on the surface hardening by repeated sliding contact)

  • 박준목;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.80-88
    • /
    • 1997
  • Repeated sliding contact wear test was performed with copper specimens to obtain the relationship between wear and surface hardening. Wear surface and wear track section were observed by optical microscopy. Wear volume and micro-vikers hardness of sublayer below wear surface were obtained. These results suggested that wear mechanism depended on contact load than sliding velocity. Therefore wear mechanism was abrasive wear within critical contact load and adhesive wear over critical contact load. Wear rate increased with contact load, sliding distance but decreased with sliding velocity. Surface hardening increased with sliding velocity and sliding distance but decreased with contact load.

  • PDF

곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석 (Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling)

  • 유용훈;조용주;이동현;김영철
    • Tribology and Lubricants
    • /
    • 제34권1호
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Contact surface element method for two-dimensional elastic contact problems

  • Liu, Zhengxing;Yang, Yaowen;Williams, F.W.;Jemah, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.363-375
    • /
    • 1998
  • The stiffness matrix of a two-dimensional contact surface element is deduced from the principle of virtual work. The incremental loading procedure used is controlled by displacement and stress. Special potential contact elements are used to avoid the need to rearrange the FEM mesh due to variations of the contact surface as contact develops. Published results are used to validate the method, which is then applied to a turbine to solve the contact problem between the blade root and rotor in the region in which a 'push fit' connects the blade to its rotor.

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

탄성변형을 고려한 윤활 상태에서 거친 표면의 미끄럼 접촉온도 해석 (Temperature Rise Analysis of Sliding Contact Surfaces in Lubrication Considering Elastic Deformation)

  • 조용주;김병선;이상돈
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.137-143
    • /
    • 2006
  • The sliding contact interface of machine components such as bearings, gears frequently operates in lubrication at the inception of sliding failure under high loads, speed and slip. The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. Most surface failure in sliding contact region result from frictional heat generation. However, it is difficult to measure temperature rise experimentally. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. The surface temperature rise is related in contact pressure, sliding speed, material properties and lubrication thickness. Though roughness, load, ect all of the condition, are same, film thickness varies with velocity. In this study, surface temperature rise due to frictional heating in lubrication is calculated with various velocities. Surface film shearing and dry solid asperity contact are used to simulate the change of frictional heat in lubricated contact