• 제목/요약/키워드: Contact Spring

검색결과 274건 처리시간 0.027초

초소형 광리스크 드라이브용 관성 래치 설계 (Inertia Latch Design for Micro Optical Disk Drives)

  • 김유성;김경호;유승헌;김수경;이승엽
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.287-294
    • /
    • 2004
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates striction and wear failure modes associated with CSS. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with sin91e spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.

3 차원 벤딩 머신에서 정밀 성형을 위한 공정 개발에 관한 연구 (A study on the process for precision forming by 3-dimension bending machine)

  • 김현진;임상헌;이춘만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1897-1900
    • /
    • 2005
  • The purpose of this study is to investigate the bending process for manufacturing of sound pipe by 3 dimension bending machine. The arbitrarily-bended pipe is widely used in a heat exchanger system. The pipe should be formed precisely for assembling of heat changer. And, spring back effect and variation of the pipe thickness should be controlled effectively. We described the change of spring back amount and thickness variation of the pipe according to the change of bending radius and bending angle by FEM analysis. The analysis is adopted the elasic-plastic analysis and contact analysis on MARC software.

  • PDF

A Study on the Variation of the Fretting Wear Mechanisms under Elastically Deformable Contacts

  • Lee, Young-Ho;Kim, Hyung-Kyu
    • KSTLE International Journal
    • /
    • 제10권1_2호
    • /
    • pp.27-32
    • /
    • 2009
  • In this study, fretting wear tests of nuclear fuel rods have been performed by using two kinds of spacer grid springs with a concave and a convex shape in room temperature dry and distilled water conditions. The objectives were to examine the variation of the wear mechanism with increasing fretting cycles and to evaluate the difference of the wear debris detachment behavior at each test environment. From the test results, the wear volume of each spring condition increased with increasing fretting cycles regardless of the test environments. However, the wear rate did not show a regular tendency and apparently changed with increasing fretting cycles. This is because the formation of the wear particle layer and/or the variation of the contact condition between the fuel rod and spring surfaces could affect a critical plastic deformation for detaching the wear debris. Based on the test results, the relationship between the wear behavior of each spring shape and test environment condition, and the variation of the surface characteristics are discussed in detail.

균일 분포하중을 주는 플렛와이퍼 스프링레일의 곡면형상식 유도 (The Curve Equation of a Flat Wiper Spring Rail Inducing Uniformly Distributed Loads)

  • 윤영삼;김철
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.79-83
    • /
    • 2010
  • Recently, the flat wiper which is one piece wiper and subjected to a pressing force at a single center point is gaining wide applications on automotive windshields. However, nonuniform reactive pressure distributions takes place, so that wiping is not completed at such locations. The wiping performance of the flat wiper is best when a wiper and a curved windshield have perfect contact without gaps under the specified pressing force of 13 ~ 15 gf/cm. Therefore, it is necessary that the realistic curvature equation of a wiper spring-rail should be obtained. Finite element analysis, CATIA script-macro function, and the least square method were utilized to find out the curvature of a spring-rail for a perfect contact with a windshield under a specified concentrated load. The curvature equation became the third order polynomial.

광 디스크 아카이브 시스템에서 디스크 삽입 상태의 동적 특성 분석 및 시뮬레이션 모델 검증 (Dynamic Analysis and Validation of a Simulation in an Optical Disc Archive System During Disk Inserting)

  • 윤주영;오원석;박노철;박영필
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.680-686
    • /
    • 2016
  • In an optical disc archive system, disc insertion process is an important part. Furthermore, dynamic analysis with the contact area between multi-bent leaf spring and a disc should be considered because the contact area is moved when the disc is inserted into the cartridge. In this paper, a finite element model of disc insertion was constructed based on dynamic characteristics, vertical stiffness, and dynamic response. The disc insertion model was validated with the experimental results. To identify the dynamic response of the disc induced by the changed contact area, applied force to the disc and the stiffness of the multi-bent leaf spring were analyzed. As the results, the factors which cause the failure of the disc insertion were investigated.

Investigation of bond-slip modeling methods used in FE analysis of RC members

  • Demir, Serhat;Husem, Metin
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.275-291
    • /
    • 2015
  • Adherence between reinforcement and the surrounding concrete is usually ignored in finite element analysis (FEA) of reinforced concrete (RC) members. However, load transition between the reinforcement and surrounding concrete effects RC members' behavior a great deal. In this study, the effects of bond-slip on the FEA of RC members are examined. In the analyses, three types of bond-slip modeling methods (perfect bond, contact elements and spring elements) and three types of reinforcement modeling methods (smeared, one dimensional line and three dimensional solid elements) were used. Bond-slip behavior between the reinforcement and surrounding concrete was simulated with cohesive zone materials (CZM) for the first time. The bond-slip relationship was identified experimentally using a beam bending test as suggested by RILEM. The results obtained from FEA were compared with the results of four RC beams that were tested experimentally. Results showed that, in FE analyses, because of the perfect bond occurrence between the reinforcement and surrounding concrete, unrealistic strains occurred in the longitudinal reinforcement. This situation greatly affected the load deflection relationship because the longitudinal reinforcements dominated the failure mode. In addition to the spring elements, the combination of a bonded contact option with CZM also gave closer results to the experimental models. However, modeling of the bond-slip relationship with a contact element was quite difficult and time consuming. Therefore bond-slip modeling is more suitable with spring elements.

마찰스프링의 주퇴복좌장치 적용성 연구 (Application Study of Recoil Mechanism using Friction Springs)

  • 차기업;김학인;조창기
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

이론 해를 이용한 층간 분리된 적층판의 충격거동 해석 (Impact response analysis of delaminated composite laminates using analytical solution)

  • 김성준;신정우;채동철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.315-320
    • /
    • 2007
  • An analytical solution has been developed for the impact response of delaminated composite plates. The analysis is based on an expansion of loads, displacements, and rotations in a Fourier series which satisfies the end boundary conditions of simply-supported. The analytical formulation adopts the Laplace transformation technique, requiring a linearization of contact deformation. In this paper, the nonlinear contact stiffness is replaced by a linearized stiffness, to provide an estimate of the additional compliance due to contact area deformation effects. It has been shown that defects such as delaminations may be modeled as spring stiffness. The change in the impact characteristics as this spring stiffness has been investigated theoretically. Predicted impact responses using analytical solution are compared with the numerical ones from the 3-D non-linear finite element model. From the results, it is shown that analytical solution was found to be reliable for predicting the impact response.

  • PDF

실험계획법을 이용한 스프레더용 충격흡수기의 최적설계 (Optimum Design of Impact Absorbing System for Spreader by Using a Design of Experiments)

  • 노영희;홍도관;김동영;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1529-1532
    • /
    • 2003
  • This paper deals with the impact analysis of the impact absorbing system consist of one degree of freedom and two degree of freedom damping-spring system in spreader to increase efficiency of it. It shows the optimum damping coefficient and spring constant of impact absorbing system using for crane spreader and the optimum condition of impact absorbing system causing certain contact impulse. In the optimal model, the contact impulse is reduced 98.57 percent and 92.22 percent respectively.

  • PDF