• Title/Summary/Keyword: Contact Roll

Search Result 145, Processing Time 0.028 seconds

Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile (이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석)

  • Lee, Sang-bong;Choi, Nak-sun;Lee, Jong-hyeon;Kim, Sang-min;Kang, Byung-duk
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

Development of Membrane Film Pressure Sensor for Hot Roll Laminator (고온 롤 라미네이터용 멤브레인 구조 필름형 압력 센서 개발)

  • Kim, Do-Yeon;Lee, Tae-Kyung;Kang, Pil-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1059-1065
    • /
    • 2020
  • Demand for pressure sensors is increasing in various fields such as machinery, healthcare and medical care. A recent study is being conducted to create sensors that are more sensitive and have longer linear sections based on measurement principles. In this paper, a film-type sensor with a membrane structure was developed to measure the pressure distributed in the axial direction of a hot roll laminator. Performance of sensors was evaluated by resistance and durability according to membrane diameter. The resistance of the membrane sensor varies according to the contact state and contact area of the electrode. Therefore, the membrane diameter selection is important. Experiments showed the most pronounced variation in resistance under pressure at 8 mm in diameter of membrane. Reliability evaluation of sensors was carried out at room temperature and high temperature. The pressure on the sensor was pressurized 1000 times to measure the initial resistance and the resistance after the evaluation to analyze the change. Sensors showed stable results with low resistance changes of 5.15% and 6.27%, respectively. A large area sensor manufactured using the developed sensor also showed reliable results.

Force-Reflecting Teleoperation for Grinding Work

  • Choo, Jung-Hoon;Lee, Jae-Yong;Lee, Jae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.824-828
    • /
    • 2003
  • This paper explains problems of force-reflecting teleoperation grinding work and proposes some methods to solve those. For stable contact between robot tool(grindstone) and contact surface the mechanical impedance force control is used. The sliding phenomenon of grindstone has been appeared at the contact surface during the grinding work. The sliding problems caused by friction and rotation of grindstone are eliminated by using tangential direction sliding compensation control. The rotation force of grindstone makes the tool move to tangential direction along the surface suddenly even though an operator pushes the tool only in normal direction to the surface. Normal direction force control is applied for grinder not to roll and fracture on the grinding surface. Vibration problem of grindstone is decreased by second order low-pass filter. Therefore we can precise grinding work at the grinding surface and feel the reality

  • PDF

The Design and Control of Contact-free Magnetic Suspension System with Four Degrees of Freedom (4자유도 비접촉 자기 서스펜션 기구의 설계 및 제어)

  • Lee, Sang-Heon;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.871-878
    • /
    • 2003
  • With the development of micro -technology, the demand for micro actual ing device is increasing. But, it is difficult to achieve high resolution and wide bandwidth with the conventional contact systems. So, the contact-free systems which are suspended or levitated by magnetic force or air bearing were proposed. These systems can be applied to high precision stages and alignment apparatuses. This paper describes a magnetically suspended system with four degrees of freedom which are composed of three rotations (roll, pitch, yaw), and one translation ( z). The operating principle and the structure of the system are similar to variable reluctance type electric machines. In this study, the force analysis is executed using magnetic circuit and virtual work principle, and the equations that describe the dynamics of the system are presented. The multivariable PID controller is adapted to the system and the experiment is executed.

A Study on Wear-Life Prediction of Conductor Roll Polisher in EGL Polishing Process (EGL 공정용 컨덕터 롤 폴리셔 수명 예측에 관한 연구)

  • Ku, Ja-Kyung;Ko, Jong-Min;Ku, Tae-Wan;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1062-1069
    • /
    • 2011
  • In electro-galvanizing line to manufacture the electro-galvanized steel sheet, polishing system is required to maintain clean surface of conductor roll and to secure the quality of the steel sheet. At the same time, prediction and decision of the replacement cycle for felt material and its brush installed in the polishing system is also important because the brush is directly contacted on the conductor roll surface. In this study, the polishing system has been designed which the brush is repetitive translating according to the longitudinal direction of the conductor roll. Furthermore, the prediction on the wear-life of the felt material used for the brush is performed using the contact pressure extracted by finite element analysis. And to verify the predicted wear-life of the felt material, the experimental study is also carried out. From the comparison result between the predicted and the measured wear-life of the felt material, it is presented that the wear-life and the replacement cycle of the felt material are well predicted by considering a wear compensation factor, and the wear compensation factor is useful and reasonable.

Analysis of Suspension State Matrix to Improve L/UL Performance (로드/언로드 성능향상을 위한 서스펜션 상태행렬의 해석)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Park, Kyung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1272-1275
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. Main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short load and unload process. In this paper, we focus on state matrix, pitch static attitude (PSA), roll static attitude (RSA), loading/unloading contour (LC/ULC), impact force and contact. Stability of slider is mainly determined by PSA and RSA. State matrix by PSA and RSA is also important indicator. Therefore we analyze state matrix of SFF HDD suspension through the LC/ULC.

  • PDF

Study on Output Characteristics of Printed Flexible Tactile Sensors Connected to Brass Terminals (황동단자에 대한 인쇄형 유연촉각센서의 출력 특성)

  • Kim, Jindong;Bae, Yonghwan;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • While the demand for robots in the manufacturing industry has dramatically increased, the industrial robots' functionality is mainly determined by the effector attached to the end of their arms. They need a flexible gripping system that can act as a human hand and easily grasp a variety of objects, which requires resilient sensors. This study clarifies the electrical output characteristics of elastic tactile sensors according to contact terminals because the output characteristics of the tactile sensors vary greatly, depending on the contact material and the method of contact with the conductive wire. Our research considers the Three Roll Mill and Paste Mixer as the dispersion medium, and a nickel- and gold-plated brass electrode as the contact terminal.

Improvement of shear deformation by controlling reduction per a rolling pass during asymmetrical cold rolling in AA 5052 (AA5052 판재의 비대칭 냉간압연 시 압연 패스당 압하율 제어에 의한 전단 변형 향상)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.226-228
    • /
    • 2007
  • During asymmetrical cold rolling in AA 5052 sheet a reduction per a rolling pass was varied to investigate the effect of the ratio of the contact length between the roll and sample ($l_c$) to the sheet thickness (d) on the formation of shear textures. In order to intensify the shear deformation during asymmetrical rolling, AA 5052 sheet was asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls. Asymmetrical rolling with $l_c$/d=1.8 led to the formation of texture gradients throughout the sheet thickness in which the outer thickness layers depicted shear textures and the center thickness layers displayed a rolling texture. Asymmetrical rolling with $l_c$/d=3.1 gave rise to the formation of shear textures in the whole through-thickness layer. The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates and along the streamline in the roll gap.

  • PDF

Elastohydrodynamic Lubrication of Line Contacts Incorporating Bair & Winer's Limiting Shear Stress Rheological Model (한계전단응력형태의 Bair & Winer 리올로지 모델을 사용한 선접촉 탄성유체윤활해석)

  • 이희성;양진승
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.85-93
    • /
    • 1998
  • The Bair & Winer's limiting shear stress rheological model is incorporated into the Reynolds equation to successfully predict the traction and film thickness for an isothermal line contact using the primary rheological properties. The modified WLF viscosity model and Barus viscosity model are also adapted for the realistic prediction of EHD tractional behavior. The influences of the limiting shear stress and slide-roll ratio on the pressure spike, film thickness, distribution of shear stress and nonlinear variation of traction are examined. A good agreement between the disc machine experiments and numerical traction prediction has been established. The film thickness due to non-Newtonian effects does not deviate significantly from the fdm thicknesss with Newtonian lubricant.

Analysis of rear suspension using airspring (공기스프링 현가장치 성능해석)

  • Tak, tae-oh;Kim, kum-Chul
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 1999
  • This paper presents a method for evaluating the performance of a leaf spring suspension and an air spring suspension systems for trucks in terms of ride and handling. Leaf springs, which generally have non-linear progressive force-deflection characteristics, are modeled using beam and contact elements. The leaf spring analysis model shows good correlation with experimental results. Each component of an air spring suspension system, which is a single leaf, air spring, height control valve, compressor and linkages, is modeled appropriately. Non-linear characteristics of air spring are accounted for using the measured data, and pressure and volume relations for height control system is also considered. The wheel rate of the air suspension is taken lower but roll stiffness is taken higher than those of leaf springs to improve ride and handling performance, which is verified through driving simulations.

  • PDF