• Title/Summary/Keyword: Contact Roll

Search Result 145, Processing Time 0.026 seconds

A 3-dimensional Wheel-rail Contact Analysis of Railway Vehicle with 2-point Contacts (2점 접촉을 고려한 철도차량의 3차원 휠-레일 접촉해석)

  • Kang, Ju-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.43-52
    • /
    • 2010
  • In this study, the shapes of the wheel and rail are represented by using 3-dimensional surface functions with surface parameters and a 3-dimensional wheel-rail contact analysis is presented. A whole numerical solution of wheel-rail contact at tread and flange including 2-point contacts can be achieved with the proposed numerical algorithm. Kinematic characteristics such as variances of vertical displacement and roll angle, and variance of wheel radius difference for arbitrary yaw and lateral displacement of wheelset, are determined for the KTX wheel-rail pair as an example. The condition of yaw and lateral displacement occurring 2-point contacts to analyze derailment are compared between standard and worn wheels. Differences of contact characteristics between curved and straight rails are also analyzed.

A Study on the Dynamic Behaviors of Toroidal Infinitely Variable Transmission (토로이달 무단변속기 동적 거동에 관한 연구)

  • Jang Siyoul;Choi Wan
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.348-354
    • /
    • 2003
  • An analysis of the dynamic behavior between disk and roller has been performed when the torque is transmitted to toroidal IVT (Infinitely Variable Transmission). The contact area, shape and pressure with elliptical shapes between disk and roller are computed as the transmission ratios are changed. This study will give the information of contact shapes between roller-input dist and roller-output disk which are working under the most severe condition. The computed results are expected to guide the design criteria for the enhanced endurance li(e. Furthermore, the investigation of contact behaviors is very crucial to develop the traction oil that the efficiency of IVT system is most dependent on.

  • PDF

A Study on the Characteristics of Automatic Flatness Control System for Stell Sheet (강판의 자동 형상제어 장치의 특성에 관한 연구)

  • 김순경;전연찬;김중완;김문경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.541-545
    • /
    • 1996
  • In this paper, The performance and functions of automatic flatness control system installed on the 4 hi-reversing mill and has been investigated under actualconditions. A new automatic flatness control system incorporates a measuring roll for measurement and correction calculations, hydraulic roll benders, selective roll cooling, and a programmable controller for interface and data logging. The test results are as following. The more the exit steel strip thickness is thick, the smaller the I value, and the more it is thin, the larger the I value. And, a complex distribution of strip tension was controlled, for example, not only a quarter buckle but also a simple center wave and edge wave. Because the tension deviation is larger at acceleration speed and deceleration speed than steady speed, so automatic flatness control system of contact type is better to adopt over 450 m/min, automatic flatness control system reduces rapidly large flatness deviation. The maximum I value of strip has been decreased to 13 I, and defects caused by poor flatness have been drastically decreased. And coolant temperature for work roll cooling system on the automatic flatness control system is better to adopt about 50-55 .deg. C.

  • PDF

Analysis on Aerodynamic Characteristics of Drying Process in R2R Printed Electronics (롤투롤 전자인쇄 건조공정의 공기역학적 특성분석)

  • Seo, Yang-Ho;Chang, Young-Bae;Kim, Chang-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.95-103
    • /
    • 2010
  • Roll to Roll (R2R) is one of the most promising production technologies in the printed electronics such as OLEDs, e-paper, backplanes, RFID because this technology can save production cost and increase production speed. Printed electronics includes various processes such as printing, drying, winding, unwinding, and so on. In printed electronics R2R system, air-flotation oven is employed for drying process. Therefore, it is essential to introduce efficient and fast drying process when printing is finished. This paper considers the analysis of drying process in R2R that involves hot air flow. Air-flotation oven consists of non-contact supports and drying of coated web materials such as plastic films and paper. In this paper, experimental results and numerical analysis of pressure-pad air bar are investigated. The aerodynamic characteristics of pressure-pad air bar are numerically calculated using computational fluid dynamics (CFD) approach. Then the measured values of the aerodynamic forces for air bars are compared with those of CFD analysis.

Study on the Evaluation and Prediction of Micro-Defects in the Hemming Process (헤밍 공정에서의 미세 결함 평가 및 예측에 관한 연구)

  • Jung H. C.;Lim J. K.;Kim H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.533-540
    • /
    • 2005
  • The hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having greater influence on the outward appearance of cars rather than on their performance. The hem quality can be quantitatively defined by the hemming defects including turn-down/up, warp and roll-in/out. However, it is difficult to evaluate and predict the hem quality through an experimental measurement or a numerical calculation since the size of defects is very small. This study aims to precisely evaluate the hemming defects, especially turn-down and roll-in, through numerical and experimental approaches and to investigate the influence of process parameters on the hem quality, focused on how to simulate the same conditions as in the experiment by the finite element analysis (FEA). The FEA results on the turn-down and roll-in obtained from a model composed of the optimum-sized elements, including a spring element linked to the flanging pad, and given the double master contact condition between the inner and outer panels, had a good correlation with the experimental data. It is thought possible to make an early estimate of the hem quality in a practical automotive design by applying the methodology proposed in this study.

A Non-Cirucular Contact Arc Model for Temper Rolling

  • Y.L. Liu;Lee, W.H.;Cho, K.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.293-300
    • /
    • 1999
  • A mathematical model for the analysis of roll gap phenomena in strip temper rolling process is described. The mechanical peculiarities of temper rolling process, such as high friction value and non-circular contact arc, low reduction and non-negligible entry and exit elastic zones as well as central restricted deformation (preliminary displacement or sticking) zone etc., are all taken into account. The deformation of work rolls is calculated with the influence function method and arbitrary contact arc shape is permitted. The strip deformation is modeled by slab method and the entry and exit elastic deformation zones are included. The restricted deformation zone near the neutral point is also considered. The concept and the calculation method of limiting preliminary displacement are used to determine the length of the central restricted deformation zone. The comparison of the model results with the measured mill data is also made.

  • PDF

Experimental Analysis of Bounce, Roll and Pitch Frequencies of Major Systems of a Large Truck using a Multi-axial Road Simulator (다축 로드 시뮬레이터를 이용한 대형트럭 주요 시스템의 바운스와 롤 및 피치 주파수의 실험적 분석)

  • Moon, Il-Dong;Oh, Chae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.128-135
    • /
    • 2005
  • This paper presents a scheme for experimentally analyzing bounce, roll and pitch frequencies of major systems of a large truck using a multi-axial road simulator. The excitation input (amplitude and frequency range) fur a frequency response test with the multi-axial road simulator is selected in order that bounce, roll and pitch modes are not coupled each other, the excitation amplitude can be reproduced in a specified excitation frequency range, and tires do not lose contact with posters. Three accelerometers, one gyroscope and four displacement meters are used in the frequency response test using the multi-axial road simulator. The reliability of the presented bounce mode frequency response test scheme is validated by comparing the result from a test using the multi-axial road simulator with the result from a road driving test. The road driving test is performed with velocities of 20km/h and 30km/h, and in an unladen state. The vertical accelerations at the cab and the front axle are measured in the road driving test. The roll and pitch mode frequency response tests are also performed with the presented frequency response test scheme. Roll and pitch frequencies of major systems of a large truck that are hard to acquire from a road driving test are analyzed as well as bounce frequency.

Reduction of the Roll-Over of the Sector Tooth for Achieving Improved Recliner Locking Performance (리클라이너 결합 성능 향상을 위한 섹터투스의 롤오버 저감 방법)

  • Lee, Sang-Hoon;Choi, Hong-Seok;Chang, Myung-Jin;Kim, Dong-Su;Bae, Jae-Ho;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1623-1630
    • /
    • 2010
  • In this study, effective forming methods for reducing the roll-over of a sector tooth, which is a main component of an automotive seat recliner, are proposed. Due to the large amount of roll-over, accurate contact between the inner gear of a sector tooth and the outer gear of a pawl tooth cannot be normally achieved; thus sensitivity and safety for the passengers decrease. To overcome the aforementioned drawback, we investigated the effect of flowcontrol forming methods involving local embossing die, coining punch, and VIC (Variable Inverse Clearance) on the roll-over depth by FE-analysis and an experiment. The results of a fine-blanking experiment for verifying the proposed methods showed that VIC type is decidedly superior from the aspects of reduction of roll-over and tool strength of the sector tooth.

Tilt variation and wake turbulence in the otter board of a bottom trawl during fishing operations

  • KIM, Yong-Hae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.337-348
    • /
    • 2017
  • The tension of warp from trawler and sea-floor contact can generate tilt and wake turbulence around otter boards. Preliminary measurements of otter board tilt and 3-D flow velocity during bottom trawl operations were taken using a vector instrument to investigate the effects of wake turbulence at the trailing edge of the otter board. Tilt data (i.e., yaw, pitch, and roll) at 1 Hz and flow data (velocities in the towing, lateral, and vertical directions) at 16 Hz were analyzed to determine their periods and amplitudes using global wavelet and peak event analyses. The mean period (${\pm}standard$ deviation) of the tilt from the peak event analysis ($5{\pm}2s$) was longer or double than that of flow velocity ($3{\pm}2s$). The two periods also had a significant linear relationship. The turbulence rate of flow was 30-50% at the trailing edge and was closely related to roll deviation. The frequency of phase difference ratios (i.e., peak time differences between tilts and flow periods) was significantly different from random occurrence in two trials, possibly due to side tidal effects. However, in the other trials, flow peaks were random, as shown by the even peak times between tilts and flows. Future studies should focus on reducing tilt variation, wake turbulence, and bottom contact to stabilize otter board motion.