• Title/Summary/Keyword: Contact Lens Materials

Search Result 64, Processing Time 0.027 seconds

Biosafety of the New Soft Contact Lens Materials in the Fibroblast L-929 Cell Line (흰쥐의 섬유아세포 L-929를 이용한 새로운 Soft Contact Lens 소재의 생물안전성 검증)

  • You, Young-Hyun;Nam, Joo-Hyeung;Kim, Bieong-Kil;Kim, Soon-Bok;Moon, Ik-Jae;Kim, Jong-Pil;Seu, Young-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • In this study, we polymerized new materials for soft contact lens using HEMA (2-hydroxyethyl methacrylate) which is the based-monomer of soft contact lens, EGDMA (ethylene glycol dimethacrylate) as cross linkage agent, and the new additives of monoester or di-ester derived from itaconic acid commercially produced by the fermentation of Asp. itaconicus. New polymer materials for soft contact lens were synthesized with the mixture of HEMA and mono- or diester at different ratios and presented to a good water content and oxygen transmissibility (Dk/L) values. In case of polymerization with HEMA and mono-ester (15%), the water content and oxygen transmissibility of contact lens were found to be good values at 57.6% and 28.5 Dk respectively. The mixture of HEMA and mono-ester is more excellent than HEMA/di-ester in the water content and oxygen transmissibility. The toxicity of new contact lens materials were confirmed in the fibroblast L-929 cell line using a agar overlay test and a growth inhibition test with the extract solution of contact lens.

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

A Study of Internal Ultrastructure on the RGP Contact Lens (RGP 콘택트 렌즈의 내부 미세구조에 대한 연구)

  • Kim, Douk Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.55-58
    • /
    • 2001
  • The rigid gas permeable(RGP) contact lens has nearly side effect on the cornea. So that, this lens has used the clinical reflective correction of the eye. This study have used several methods for research the fine internal structure on the RGP contact lens by scanning electron microscopy. The results have indicated that the postfixation of 1% $OsO_4$ and tannic acid is responsible for a fine structure in the internal plane of RGP contact lens. These internal surface of contact lens appeared the several shape of the hole of the stereo shape form with arrangement of round form. But, on the contact lens with non-postfixation, the stereo shape have not present and the boundary of the vesicle have not clear. Maybe, these results suggest that the fixation methods have effect on the morphological characters of materials on the RGP contact lens.

  • PDF

Compatibility of POSS Composites with Silicone Monomers and Application to Contact Lenses Material

  • Lee, Min-Jae;Lee, Kyungmun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.354-359
    • /
    • 2020
  • This research was conducted to analyze the compatibility of used monomers and produce the high functional contact lens material containing silicone monomers. Silicone monomer (Sil-OH), Trimethylsilylmethacrylate (TSMA) were used as additives for the basic combination of Polyhedral Oligomeric Silsesquioxane (POSS), methyl methacrylate (MMA) and methyl acrylate (MA). And also, the materials were copolymerized with ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the fabricated lenses of all combinations are optically excellent and thus used monomers have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic lens material were varied in each case. Especially TSMA with POSS increases the oxygen permeability and Sil-OH with POSS increases the wettability by the addition of Sil-OH. These materials were considered to have compatibility each other, so it can be used in functional contact lens material.

Development of New Soft Contact Lens Materials Using Ester-Monomers of Itaconic Acid from Aspergillus itaconicus (Aspergillus itaconicus 유래 itaconic acid의 ester-monomer를 이용한 새로운 soft contact lens 소재 개발)

  • You, Young-Hyun;Nam, Joo-Hyeung;Kim, Bieong-Kil;Kim, Soon-Bok;Moon, Ik-Jae;Kim, Jong-Pil;Seu, Young-Bae
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.538-542
    • /
    • 2009
  • In this study, we confirmed water content and oxygen permeability of new polymeric materials synthesized from itaconic acid used for soft contact lenses. In this study, we polymerized materials for soft contact lenses using HEMA (2-hydroxyethyl methacrylate), the based-monomer of soft contact lenses, EGDMA (ethylene glycol dimethacrylate) as a cross linkage agent, and the new additives mono-ester or di-ester derived from itaconic acid commercially produced by the fermentation of A. itaconicus. New polymer materials for contact lenses were synthesized with the mixture of HEMA and mono- or di-ester at different ratios and water content and oxygen permeability (Dk) was analyzed. In polymerizing HEMA and mono-ester (15%), the water content and oxygen permeability of contact lenses were found to be of good value at 57.7% and 28.6 Dk respectively. The mixture of HEMA and mono-ester is more excellent than HEMA/di-ester in regards to water content and oxygen permeability. The water content and oxygen permeability of soft contact lenses made by new polymeric materials were highly represented.

Relationship between the Deposition of Tear Constituents on Soft Contact Lenses according to Material and Pigmentation and Adherence of Staphylococcus aureus (소프트콘택트렌즈 재질과 착색에 따른 눈물성분 침착과 포도상구균 흡착의 상관관계)

  • Park, So Hyun;Park, Ill-suk;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2016
  • Purpose: The study was aimed to figure out the effect of materials and pigmentation of soft contact lens on the adherence of Staphylococcus aureus upon soft contact lenses deposited with tear components. Methods: The number of adherent S. aureus on clear and circle soft contact lenses made of etafilcon A, hilafilcon B, nelfilcon A was measured before and after incubation in artificial tear. Furthermore, the denaturalization level of tear protein with time after incubation in artificial tear was estimated by electrophoresis. Results: The adherence of S. aureus was significantly different according to the lens materials. The pattern of bacterial adherence on clear and circle contact lenses was different. That is, the adherent amount of S. aureus was somewhat larger on circle lens made of etafilcon A however, amount on circle lenses made of hilafilcon B and nelfilcon A was 89.3% and 71.3% of the number on clear lenses. When the tear protein was deposited on contact lenses, the number of adherent bacteria decreased and its degree was varied according to the lens material. The degree of decrease was the biggest in clear soft lens made of etafilcon A. Anti-bacterial effect of tear protein decreased with time after deposition of tear protein on soft contact lens and the amount of lysozyme also decreased. The reduction of anti-bacterial effect and quantity of lysozyme was different according to contact lens materials and pigmentation. Conclusions: It was revealed that the adherence of S. aureus depends on contact lens materials and pigmentation, and the specification of lens material affects more on adherence of S.aureus than pigmentation. It was further figured out the denaturalization level of anti-bacterial protein on soft contact lens varies according to lens materials and pigmentation, which produces an effect on the quantity of bacterial adherence.

Comparisons of Adherence Level of Micro-organisms According to Contact Lens Materials and Protein Deposition and Disinfection Efficacy of Multipurpose Solution (콘택트렌즈 재질 및 침착 단백질에 따른 균 흡착 정도와 다목적용액의 살균력 비교)

  • Sung, Hyung Kyung;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • Purpose: The present study was aimed to compare the difference in adherence level of microorganisms according to contact lens materials and protein deposition and to evaluate disinfection efficacy of multipurpose solution. Methods: The evaluations of micro-organisms' adherence and disinfection efficacy of multi-purpose solution were conducted by employing the Part 2. Regimen Procedure for Disinfecting Regiments in the Disinfection Efficacy Testing under the "FDA Evaluation Criteria & Method". Results: Pseudomonas aeruginosa, Serratia marcescens, Candida albicans except Staphylococcus aureus adhered more on etafilcon A lens and disinfection efficacy of total 4 products investigated was almost perfect except Candida albicans. The 3 micro-organisms except Serratia marcescens adhered more to albumin-predeposited lens. Disinfection efficacy of multi-purpose solution was higher against the micro-organisms adhered to albumin-deposited lens than against the micro-organisms adhered to the lysozyme-deposited lens. Furthermore, disinfection efficacy of multi-purpose solution was different according to types of micro-organisms. Conclusions: It was revealed that the type of micro-organisms, the lens materials and type of absorbed tear protein affected the amount of adhered micro-organisms to contact lens and that adhesion of tear protein could induce the change of disinfection efficacy of multi-purpose solution. It suggest that the hygienic condition of contact lens can vary by these factors influencing on disinfection efficacy and the occurrence of adverse effect can be affected.

Analysis of Physical and Antibacterial Properties of Functional Silicone Hydrogel Ophthalmic Lenses Containing Graphene Groups

  • Su-Mi Shin;Hye-In Park;A-Young Sung
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The physical and antibacterial properties of ophthalmic lenses fabricated by copolymerization with hydrogel monomers using two types of graphene were measured, and their usability as contact lens materials was analyzed. For polymerization, silicone monomers, including SID-OH, 3-(methacryloxy)propyl tris(trimethylsiloxy)silane, and decamethylcyclopentasiloxane, were used, and N,N-dimethylacetamide, ethylene glycol dimethacrylate as a crosslinking agent, and azobisisobutyronitrile as an initiator were added. Also, graphene oxide nanoparticle (GON) and graphene nanoplate (GNP) were used as an additive, and the physical properties of the lenses fabricated after copolymerization were evaluated. The fabricated lenses satisfied the basic physical properties of general hydrogel contact lenses and showed the characteristics of lenses with high water content, and the disadvantage of very weak durability, due to low tensile strength. However, it was confirmed that the tensile strength and antibacterial properties were greatly improved by adding GON and GNP. With GON, the oxygen permeability and refractive index of the fabricated lenses were slightly improved. Therefore, it was determined that the graphene materials used in this study can be used in various ways as a contact lens material.

Polymerization of Hydrogel Contact Lens with High Oxygen Transmissibility (산소투과성이 뛰어난 Hydrogel 콘택트렌즈 합성)

  • Sung, A-Young;Kim, Tae-Hun;Kong, Jung-Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • Acrylate -PDMS(Polydimethylsiloxane)-Urethane Prepolymer is synthesized through treating diisocynate, HEMA(2-hydroxyethylmethacrylate) and bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) having high oxygen permeability under the DBTDL(Dibutylitin dilaurate) catalyst. Modification of HEMA on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to be able to polymerize with other contact lens materials. And modification of urethane on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to increase elastic property and oxygen transmissibility. This material is analyzed by FT-IR and also will be used to make hydrogel contact lens.

  • PDF

Understanding of Protein Adsorption to Contact Lens Hydrogels with Varying Surface Energy (콘택트렌즈용 하이드로젤 계면에너지에 따른 단백질 흡착현상의 이해)

  • Jeon, So-Ha;Noh, Hye-Ran
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.338-343
    • /
    • 2012
  • Interfacial properties of commercially available soft contact lens hydrogels were studied to understand thermodynamic phenomena of protein adsorption. Hydrogel particles ($1{\times}1mm^2$) with varying water wettability were exposed to bovine serum albumin solutions for an hour. The remained albumin solutions were analyzed with Bradford assay method. The amount of protein adsorbed to hydrogels increased with protein solution concentrations following Langmuir isotherm. The partition coefficient ($P$) and Gibbs free energy cost of dehydrating the surface region by protein displacement upon adsorption increased with increasing hydrophilicity of contact lens. Understanding of physical chemistry in protein adsorption to contact lens materials enabled elucidating relationships between surface energy and albumin adsorption capacity.