• 제목/요약/키워드: Contact Impact

검색결과 708건 처리시간 0.024초

환경친화형 주거단지지 계획에 관한 의식조사 - 공동주택 거주자와 전문가를 대상으로 - (A Survey on the Residents' and Experts' Consciousness to Planning of the Environment-Friendly Apartment Complex)

  • 정유선;윤정숙
    • 한국주거학회논문집
    • /
    • 제13권4호
    • /
    • pp.81-88
    • /
    • 2002
  • The purpose of this study is to accumulate basic data to establish planning direction and planning factors for the environment-friendly apartment complex. For this purpose, the survey has been conducted to residents living in an apartment housing and graduate students, architects and research experts in the field. The major findings of this study are as follows; 1) The basic concept of planning factors for environment-friendly apartment complex are energy saving, resources saving, minimizing environment pollution, natural harmony, regional identity and pursuit of residents' health & amenity. 2) For the planning factors of environment-friendly apartment complex, the residents had a great regard for aspect of Low-Impact (energy saving, resources saving, minimizing environment pollution). The experts, on the other hand, had a great regard for aspect of High-contact (natural harmony, regional identity). 3) It was increase of prime cost that the residents and experts regarded as the most important problem of planning and purchasing of environment-friendly apartment. It thus appears that the promotion of environmental consciousness of residents taking in the portion of increased cost is crucial parts and also that the role of the connected aspects such as administration, construction companies and residents must be redefined in order to manage problems caused in process of the development of it.

ANALYSIS OF THE FIT IN THE IMPLANT PROSTHESIS USING A LASER DISPLACEMENT METER AND THREE-DIMENSIONAL FINITE ELEMENT METHOD

  • Kwon Ho-Beom;Kim Yung-Soo;Kim Chang-Whe
    • 대한치과보철학회지
    • /
    • 제39권6호
    • /
    • pp.611-624
    • /
    • 2001
  • A precise fit of the implant prosthesis is one of the most important factors in preventing mechanical complications. To analyze the degree of the misfit of implant prosthesis, a modal testing experiment was accomplished. And. to interpret the modal testing analysis mathematically, three-dimensional finite element models were established. In the experimental modal testing analysis, with a laser displacement meter, FFT analyzer, impact hammer, etc., natural frequencies of the models with various degree of prosthesis fit were determined after the frequency response function were calculated. In the finite element analysis, the natural frequencies and mode shapes of the models which simulated those of experimental modal testing were computed. The results were as follows: 1. Natural frequencies of the prosthesis-abutment were related to the contact state between components. 2. In the modal testing experiment, the natural frequencies increased from $50{\mu}m$ to $200{\mu}m$ gap and reached a plateau. 3. In the finite element analysis, the natural frequencies decreased gradually according to the in crease of the gap size. 4. In the finite element analysis, the mode shapes of model 1 with misfitting prosthesis showed different patterns from those without misfitting prosthesis. 5. The devices including a laser displacement meter used in this study were useful for measuring the natural frequencies of an implant prosthesis which had various degrees of fit.

  • PDF

대형트럭의 정면 충돌 특성해석을 위한 유한요소모델의 개발 (Development of a Finite Element Model for Frontal Crash Analysis of a Large-Sized Truck)

  • 김학덕;송주현;오재윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.489-494
    • /
    • 2001
  • This paper develops a finite element model for frontal crash analysis of a large-sized truck. It is composed of 220 parts, 70,041 nodes and 69,073 elements. This paper explains only major parts' models in detail such as frame, cab, floor, and bumper which affect on crash analysis a lot. In order to prevent penetration not only at a part itself but also between parts, all contact areas are defined using type-36, self-impact type. The developed model's reliability is validated by comparing simulation and crash test results. The results used for model validation are vehicle pulses at B-pillar, and frame and deformation of frame and cab. The frontal crash simulation is performed with the same conditions as crash test. And, it is performed using PAM-CRASH installed in super-computer SP2. The developed model whose reliability is verified may be used as a base to develop a finite element model for occupant behavior and injury coefficient analysis.

  • PDF

병원 고객만족과 서비스품질과의 관계에 관한 연구 (A Study of Relation with Hospital Customer Satisfaction and Quality of Service)

  • 김동일
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2010년도 춘계 종합학술대회 논문집
    • /
    • pp.247-249
    • /
    • 2010
  • 본 연구는 병원의 서비스 품질에 초점을 두고 서비스 내용을 중심으로 고객과의 접촉으로 나타나는 결과들을 종합 평가하였다. 투입된 변수 즉, 병원서비스 품질과 고객만족, 재이용의도 등의 관계정도는 병원의 전략적 병원경영의 기초가 될 수 있다고 볼 수 있다. 연구결과 병원서비스 품질과 고객 만족, 재이용의도간의 영향관계에서 병원서비스 품질은 고객 만족, 재이용의도에 매우 유의한 것으로 분석되었다. 향후 이러한 결과는 고객중심적 병원경영에 지침을 제공할 수 있으며, 더 나아가 경쟁력 강화에 응용될 수 있을 것으로 기대된다.

  • PDF

입각기.유각기 동시제어식 대퇴의지의 개발 (Development of a Stance and Swing Phase Control Transfemoral Prosthesis)

  • 김신기;김경훈;문무성;이순걸;백영남
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.685-694
    • /
    • 2001
  • In this study, a transfemoral prosthesis system of which both stance phase and swing phase are controllable has been developed for the recovery of the biomechanical function of the amputated leg. It consists of a 5 bar link mechanism, a hydraulic-rubber knee damper for stance phase control and a pneumatic cylinder controlled via a microprocessor for stance phase control. The mechanical characteristics of the knee damper which absorbs the impact energy generated at the heel contact were investigated. The characteristics of the pneumatic cylinder essential for the speed adaptation of the prosthesis during swing phase were also studied for its mechanical characteristics. The prosthesis was subject to the clinical tests, and the gait characteristics obtained were very close to those of normal subjects. The stance and swing controlled prosthesis that were developed in this study showed good stability during the stance phase and showed good controllability during the swing phase.

레일과 차륜의 마모에 대한 기하학적 검토 (A geometrical review on the wear of rail and KTX wheel)

  • 이지하;이희업;이희성;강기석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.442-449
    • /
    • 2000
  • Before the complete construction of new high-speed line between Seoul and Pusan, KTX is going to operate on both new high-speed line between Seoul and Daegu and electrified conventional lines between Daegu and Pusan. Then, the wheels of KTX are going to operate on various rails such as KS50N and KS60 of conventional line as well as UIC60 of high-speed line. Also, conventional line will have a mixed traffic mode with various types of trains operating on it, such as Saemaul and Mugunghwa. Hence, this study reviews the wear phenomena of wheels and rails in geometrical point of view by comparing their profiles. The analyses of the results show that because UIC60 rail is designed for KTX, KS50N rail whose profile is similar to that of UIC60 will not have any impact on the shape of wheel wear. On the other hand, KS60 rail is expected to have partial wear on both the flange of KTX wheel and the gauge corner of the rail in the initial stages. However, the operation of the trains whose wheels have 1/20 conicity will cause partial sidewear on the inside of the rail and the movement of the contact point between KTX wheel and the rail toward the inside of the track. As a result, the flange wear of KTX wheel will be reduced and the formation of wear-equilibrium profile will be faster.

  • PDF

Effects of Operational Parameters on the Removal of Acid Blue 25 Dye from Aqueous Solutions by Electrocoagulation

  • Balarak, Davoud;Ganji, Fatemeh;Choi, Suk Soon;Lee, Seung Mok;Shim, Moo Joon
    • 공업화학
    • /
    • 제30권6호
    • /
    • pp.742-748
    • /
    • 2019
  • Influence of several experimental parameters (e.g., initial dye concentration, pH, distance between electrodes, applied voltage, electrical conductivity, current density, and reaction time) on the performance of electrocoagulation (EC) process for the removal of acid blue 25 (AB25) was studied. A bipolar batch reactor was used to test the impact of the parameters. The removal efficiency (RE) of AB25 dye was promoted by increasing the contact time, voltage, electrical conductivity, and applied current density. In contrast, RE of AB25 decreased with higher level of AB25 and the longer distance between electrodes. The removal efficiency increased consistently until pH 7, but decreased above pH 7. The maximum efficiency of AB25 removal above 90% was obtained at a voltage of 60 V, reaction time of 90 min, distance between electrodes of 0.5 cm, initial concentration of 25 mg/L, conductivity of 3,000 μS/cm and pH of 7. These results imply that the high RE of AB25 dye from the aqueous solution can be achieved by EC process.

5×5 핵연료 모의 집합체의 지지격자 스트랩 진동특성 (The Grid Strap Vibration Characteristics of the 5×5 Nuclear Fuel Mock-up)

  • 김경홍;박남규;김경주;서정민
    • 한국소음진동공학회논문집
    • /
    • 제22권7호
    • /
    • pp.619-625
    • /
    • 2012
  • Since the fuel is always exposed to turbulent flow, the grid strap shows flow induced vibration characteristics that impact on the nuclear fuel soundness. The dynamic behavior of grids in nuclear fuels is quite complex, since two pairs of spring and dimple support are contacted with rods by friction in the limited space. This paper focuses on investigation of the grid strap(test fuel strap, TFS) vibration in one cell. TFS consists of a single spring and double dimples. To identify the grid strap vibration, modal analysis of the strap is performed using finite element method(FEM). Modal testing on a $5{\times}5$ grid structure without rods is performed. The modal testing results are compared to analytic results. In addition, random test considering rod effect is performed about a $5{\times}5$ grid with rods under real contact condition in the air. Finally, the strap vibration of a $5{\times}5$ fuel bundle in investigation of flow induced vibration(INFINIT) facility is measured in real fluid velocity condition without heating. It is shown that modal frequencies from the test are almost equal to those peak frequencies in the INFINIT test.

입각기와 유각기 제어 대퇴의지의 개발 (Development of a Stance & Swing Phase Control Transfemoral Prosthesis)

  • 김신기;김종권;홍정화;김경훈;문무성;이순걸;백영남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.504-509
    • /
    • 2000
  • In this study, a transfemoral prosthesis system of which stance phase and swing phase are controlled during walking has been developed for the recovery of the biomechanical function of the amputated leg. It consists of a 5 bar link mechanism, a hydraulic-rubber knee damper for stance phase control and a pneumatic cylinder controlled via a microprocessor for stance phase control. The mechanical characteristics and behaviour of the knee damper which absorbs the impact energy generated at the heel contact was investigated. The characteristics of the pneumatic cylinder essential for the speed adaptation of the prosthesis during swing phase was also studied for its mechanical characteristics. The prosthesis was subject to the clinical test ant the gait characteristics obtained were very close to those of normal. The stance and swing controlled prosthesis that were developed in this study showed good stability during the stance phase and showed good controllability during the swing phase.

  • PDF

이족보행로봇을 위한 슬라이딩 제어기 설계 (Sliding Mode Controller Design for Biped Robot)

  • 박인규;김진걸;김기식
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF