• Title/Summary/Keyword: Contact Impact

Search Result 697, Processing Time 0.024 seconds

Low-Velocity Impact Analysis and Contact Law on Composite Laminates (복합적층판에 대한 저속충격해석과 접촉법칙)

  • 최익현
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2003
  • Usually many researchers have used the modified Hertzian contact law or experimental static indentation law to analyze impact response of composite laminates subjected to the low-velocity impact. In this study, physical meaning of the method using the laws was investigated and the difference between the analytical results obtained using the laws was also investigated. Furthermore parametric study on contact constant and exponent in the contact law was performed. Finally it was shown that a linearized contact law can be well applied to low-velocity impact response analysis of composite laminates. If this concept is used, commercial finite element software can be used to solve impact problem without making any auxiliary code.

Continuous Contact Force Model for Low-Speed Rear-End Vehicle Impacts (차량 저속 추돌의 연속 접촉력 모델)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.181-191
    • /
    • 2006
  • The most common kind of vehicular accident is the low-speed rear-end impact that result in high portion of insurance claims and Whiplash Associated Disorders(WAD). The low-speed collisions have specific characteristics that differ from high speed collisions and must be treated differently This paper presents a simple continuous contact force model for the low-speed rear-end impact to simulate the accelerations, velocities and the contact force as functions of time. A smoothed Coulomb friction force is used to represent the effect of braking, which was found to be significant in simulating low-speed rear end impact. The intervehicular contact force is modeled using nonlinear damping and spring elements with coefficients and exponents. This paper presents how to estimate analytically stiffness and damping coefficients. The exponent of the nonlinear contact force model was determined to match the overall acceleration pulse shape and magnitude. The model can be used to determine ${\Delta}Vs$ and peak accelerations for the purpose of accident reconstruction and for injury biomechanics studies.

Development of Contact Module in AutoDyn7 Program (AutoDyn7 프로그램의 접촉모듈 개발)

  • 임성현;손정현;김광석;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.152-159
    • /
    • 2001
  • In multibody dynamic analysis including contact and impact, there are two major analysis methods, i.e., piecewise analysis and continuous analysis. Modeling of contact phenomena is mainly classified with a Kelvin-Voigt model or a model of Hertz contact model. In this paper, a contact module fur AutoDyn7 program was developed and implemented. Both the Kelvin-Voigt model and a model of Hertz contact law were developed. The process of this module is composed of contact distinction and the contact force calculation. Two examples were verified and compared to the commercial program DADS.

  • PDF

Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires (댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증)

  • 김성대;김원진;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.460-465
    • /
    • 2002
  • The nonlinear vibration of the CRT shadow mask is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the shadow mask is obtained from dynamic condensation for the mass and stiffness matrices. Damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask with damping wires, the‘design of experiments’technique is applied to search fur the optimal damping wire configuration so that the vibration attenuation of the shadow mask is maximized.

  • PDF

Impact response analysis of delaminated composite laminates using analytical solution (이론 해를 이용한 층간 분리된 적층판의 충격거동 해석)

  • Kim, Sung-Joon;Shin, Jeong-Woo;Chae, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.315-320
    • /
    • 2007
  • An analytical solution has been developed for the impact response of delaminated composite plates. The analysis is based on an expansion of loads, displacements, and rotations in a Fourier series which satisfies the end boundary conditions of simply-supported. The analytical formulation adopts the Laplace transformation technique, requiring a linearization of contact deformation. In this paper, the nonlinear contact stiffness is replaced by a linearized stiffness, to provide an estimate of the additional compliance due to contact area deformation effects. It has been shown that defects such as delaminations may be modeled as spring stiffness. The change in the impact characteristics as this spring stiffness has been investigated theoretically. Predicted impact responses using analytical solution are compared with the numerical ones from the 3-D non-linear finite element model. From the results, it is shown that analytical solution was found to be reliable for predicting the impact response.

  • PDF

Optimum Design of Impact Absorbing System for Spreader by Using a Design of Experiments (실험계획법을 이용한 스프레더용 충격흡수기의 최적설계)

  • 노영희;홍도관;김동영;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1529-1532
    • /
    • 2003
  • This paper deals with the impact analysis of the impact absorbing system consist of one degree of freedom and two degree of freedom damping-spring system in spreader to increase efficiency of it. It shows the optimum damping coefficient and spring constant of impact absorbing system using for crane spreader and the optimum condition of impact absorbing system causing certain contact impulse. In the optimal model, the contact impulse is reduced 98.57 percent and 92.22 percent respectively.

  • PDF

Numerical Analysis of Randomly Driven Vibro-Impact System With a Coefficient of Restitution Contact Mechanism (불규칙가진의 반발계수 진동-충격 시스템의 수치해석)

  • 이창희
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.513-523
    • /
    • 1998
  • Impact response of a vibro-impact system and its contact mechanism was studied. The vibro-impact system is composed of a small secondary system is constrained to move along a slot of fixed length in a large primary system. The contact mechanism is characterized by its coefficient of restitution. Numerical simulation analysis has been used to determine the time-history and the impact statistics of the primary and secondary systems. Input excitation of the primary system was random, and the responses obtained were the velocities of the primary and secondary system, the closing velocity in time axis and the duration time between impacts. The validity of the numerical simulation method was checked by comparing the results with those obtained by other researchers analytically. It is shown that the results obtained by the nemerical simulation analysis showed a good agreement with those for the analytical method.

  • PDF

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Dynamic Characteristics of Link Mechanism with Clearance (간극이 있는 링크기구의 동특성)

  • 최연선;배성준
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1050-1057
    • /
    • 1999
  • The existence of clearance at the link joint of a machine is inevitable for assembly and mobility. During the cyclic operation of a machine, rapid changes of the direction and magnitude of connection forces cause momentary loss of contact between the pin and the bushing at the link joint. Contact loss at the clearance joint gives rise to undesirable impact. The impulsive force affects on the performance of the machine, and leads to excessive vibration, noise and faster wear in the connecitons. In this paper, experiment and theoretical analysis were carried out for the variation of crank speed and clearance size. The link mechanism employed in this investigation was newly designed to check the effects of parameter changes on the occurrence of contact loss and on the magnitude of the impact force. The contact loss and impact position were calculated with various driving conditions.

  • PDF

Microparticle Impact Motion with Adhesion and Frictional Forces (부착력과 마찰력이 개재된 마이크로 입자 충돌 운동)

  • Han, In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1698-1708
    • /
    • 2002
  • The main topic covered in this paper is that of the impact process, that is, where two bodies come into contact and rebound or stick together. This paper presents how to determine the rebound velocities of a microparticle that approaches a surface with arbitrary initial velocities and relate the impact process to the physical properties of the materials and to the adhesion force. Actual adhesion forces demonstrate a significant amount of energy dissipation in the form of hysteresis, and act generally in a normal to the contact surfaces. Microparticles must also contend with forces tangent to the contact surfaces, namely Coulomb dry friction. The developed model has an algebraic form based on the principle of impulse and momentum and hypothesis of energy dissipation. Finally, several analyses are carried out in order to estimate impact parameters and the developed analytical model is validated using experimental results.