• Title/Summary/Keyword: Contact Force Estimation

Search Result 68, Processing Time 0.062 seconds

Estimation of the Frictional Coefficient of Contact Point between the Terrain and the Wheel-Legged Robot with Hip Joint Actuation (고관절 구동 방식을 갖는 바퀴-다리형 로봇과 지면 간 접촉점에서의 마찰계수 추정)

  • Shin, Dong-Hwan;An, Jin-Ung;Moon, Jeon-Il
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • This paper presents the estimation of the frictional coefficient of the wheel-legged robot with hip joint actuation producing maximum tractive force. Slip behavior for wheel-legged robot is analytically explored and physically understood by identification of the non-slip condition and derivation of the torque limits satisfying it. Utilizing results of the analysis of slip behavior, the frictional coefficients of the wheel-legged robot during stance phase are numerically estimated and finally this paper suggests the pseudo-algorithm which can not only estimate the frictional coefficients of the wheel-legged robot, but also produce the candidate of the touch down angle for the next stance.

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Estimation of Design Variables for Improving the Bonding Force of Lid & Frame for Cellular Phone (휴대폰용 리드 앤 프레임의 접합력 향상을 위한 설계 변수 평가)

  • Nam, K.J.;Lee, J.M.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.414-417
    • /
    • 2008
  • A lid & frame used as the shield of electromagnetic waves in cellular phones are composed of frame, which is welded at their electric circuits, and lid, of which debonding and joining are available from the frame. Typical lid & frame were mechanically bonded by contact between the embossing of lid and the piercing of frame Bonding force of this part have to allow us to detach the lid from frame for exchange or fix of the electric part and have to be high enough to protect the electric part from external impacts. This study is designed to estimate the effect of design variable of lid & frame on its debonding force. Estimations were performed by finite element method.

  • PDF

Estimation of Design Variables for Improving the Bonding Force of Lid & Frame for Cellular Phone (휴대폰용 리드 및 프레임의 접합력 향상을 위한 설계 변수 평가)

  • Nam, K.J.;Lee, J.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.245-250
    • /
    • 2009
  • A lid & frame used as the shield of electromagnetic waves in cellular phones are composed of frame, which is welded at their electric circuits, and lid, of which debonding and joining are available from the frame. Typical lid & frame were mechanically bonded by contact between the embossing of lid and the piercing of frame. Bonding force of this part has to allow us to detach the lid from frame for exchange or fix of the electric part and have to be high enough to protect the electric part from external impacts. This study is designed to estimate the effect of design variables of lid & frame on its debonding force. Estimations were performed by finite element method.

Cutting Force Prediction of Slanted Surface Ball-End Milling Using Cutter Contact Area (절삭영역 해석을 통한 경사면 가공에서의 볼엔드밀 절삭력 예측)

  • 김규만;조필주;황인길;주종남
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • Cutting forces in ball-end milling of slanted surfaces are calculated. The cutting area is determined from the Z-map of the surface geometry and current cutter location. The obtained cutting area is projected onto the cutter plane normal to the Z-axis and compared with cutting edge element location. Cutting force is calculated by integration of elemental cutting forces of engaged cutting edge elements. Experiments with various slanted angles were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and surfaces with pockets and holes.

  • PDF

Estimation of Machinability of Lead Brass Based on In-Situ Observation in Scanning Electron Microscope (전자현미경 In-Situ 관찰방법을 이용한 황동의 절삭성평가)

  • Jung, Seung-Boo;Lim, Ok-Dong;An, Seong-Uk
    • Applied Microscopy
    • /
    • v.24 no.3
    • /
    • pp.87-93
    • /
    • 1994
  • In order to elucidate the machinability of lead brass, orthogonal machining experiment was conducted in SEM(Scanning Electron Microscope) equipped with a micro-machining device at a cutting speed of $7{\mu}m/s$ for brass containing 0.2 to 3wt% Pb. The microfactors (i.e., shear angle, contact length between chip and tool) were determined by in-situ observations. Machinability of brass containing lead is discussed in terms of the microfactors and the cutting resistant force tested by lathe cutting. The dynamic behavior of the chip formation of lead brass during the machining process was examined: The chips of lead brass form as a shear angle type. The shear angle increases with the content of lead in (6:4) brass. The pronounced effect of lead on the contact length between chip and tool was observed above 1% Pb. The cutting resistant force tested by lathe decreases remarkably with the lead content in brass. The observed microfactors are in close relation to the tested resistant force in macromachining.

  • PDF

An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates (복합적층판의 저속충격시험 및 거동에 대한 실험적 연구)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control (위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛)

  • Kim, Byeong-Sang;Park, Jung-Jun;Song, Jae-Bok;Kim, Hong-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

Compliance Control of a 6-tink Electro-Hydraulic Manipulator (6축 전기 유압 매니퓰레이터의 컴플라이언스 제어)

  • 안경관;표성만
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is quite difficult to obtain stable control performance. We have applied a disturbance estimation and compensation type robust control to all the axes in a 6-link electro-hydraulic manipulator. It was confirmed that the performance of trajectory tracking and attitude regulating was greatly improved by the disturbance observer. For autonomous assembly tasks, it is said that compliance control is one of the most popular methods in contact task. We have proposed a compliance control based on the position control by a disturbance observer for our manipulator system. To realize more stable contact work, the states in the compliance loop are feedbacked, where not only displacement but also the velocity and acceleration are considered. We have also applied this compliance control to the Peg-in-Hole insertion task and proposed new methods of (1)rotating of the end-effector periodically in order to reduce the friction force, (2)random searching for the center of a hole and (3)trajectory modification to reduce the impact force. As a result of these new methods, it could be experimentally confirmed that the Peg-in-Hole insertion task with a clearance of 0.007 [mm] could be achieved.