• Title/Summary/Keyword: Contact Condition

Search Result 1,540, Processing Time 0.026 seconds

Subjective Symptoms according to Fitting Test in Soft Contact Lens Wearers (소프트콘택트렌즈 착용자의 피팅 상태 확인 유무에 따른 자각적 증상)

  • Kim, Jung-Hee;An, Youngju
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.431-442
    • /
    • 2018
  • Purpose : The purpose of this study was to investigate subjective symptoms according to the wearing, purchase and fitting status of soft contact lens wearers, and consumer perception of base curve. Methods : A survey was conducted for those who visited optical shops and lens shops in Seoul from June to August 2018. A total of 98 answer sheets they submitted were used for the analysis. The chi-square test and Fisher's exact test were used to compare subjective symptoms (dryness, glare, uncomfortable fitting, and decreased vision) according to whether fitting condition is screened (case history and push-up test, ect relevant to wearing sensation), and the odds ratio (OR) was obtained by the logistic regression analysis. Results : When the contact lenses were purchased, the rate of which the visual acuity test was performed was 86.6% at optical shop and 64.7% at lens shop. When purchasing contact lens and the contact lens was not tested for fitting, they more experienced dryness (OR 4.41, 95% CI 1.25-15.62) and uncomfortable fitting (OR 2.68, 95% CI 1.08-6.64) than testing for fitting. In addition, it was investigated that 87.8% of contact lens wearers did not know about the term base curve, 92.9% did not listen to an explanation related to the base curve when purchasing contact lenses, and 96.9% did not experience with base curve test. Conclusion : It would be thought that satisfaction of the contact lens fitting of existing consumers should be improved by changing a proper base curve by confirming the fitting condition when prescribing soft contact lens.

Bending Fatigue Life Evaluation of Pure Copper and Copper Alloy Contact Wire (동 전차선(Cu) 및 동합금 전차선(CuSn)의 굽힘피로 수명 평가)

  • Kim, Yongseok;Li, Haochuang;Kang, Minsung;Koo, Jae-Mean;Seok, Chang-Sung;Lee, Kiwon;Kwon, Sam-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1346-1350
    • /
    • 2012
  • Contact wire is one of the most important components supplying electricity to railroad cars. At the beginning of the research on contact wire, wear problem caused by friction between contact wire and pantograph was considered even more important issue for the failure of contact wire. However, since several fatigue fractures were reported from Shinkansen in Japan, fatigue fracture has become another important issue for the failure of contact wire. Despite of its importance, standard of the fatigue test of contact wire has not been established yet. Thus, fatigue characteristics of contact wire is very difficult issue to evaluate quantitatively. Hence, in this study, test method simulating operating conditions of contact wire by Minsung Kang and etc. is used to evaluate the fatigue characteristics of copper alloy contact wire. Also, test results is compared with the result of Minsung Kang's research on pure copper contact wire.

Non-Stationary Stress Analysis of Repaired Concrete Structures due to Hygral Transient Condition (대기 습도변화에 따른 콘크리트 보수체의 비정상적인 습도응력 조사)

  • 윤우현
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.157-166
    • /
    • 1997
  • The object of this study was invest, igat, ing the failure phenomenon in the contact zone of rcpnired concrete structures due to the external climate change(hygral transient condition). This study was carrie out by calculating the non-stationary moisture and stress distribution in the repaired concrete structures with the cement mortar. In this analysis, main variables were the overlay thickness (Do=0.5-2.5cm). and the pre-wetting time(tc= l-5days). and the cxtcrnal 1.~1ative humidity(Ho=50-80%). The results show that the minimum overlay thickness and the minimum pre-wetting time are necessary to k e ~ p compressive stresses in the contact zone for a relative humidity.

Proposal of Novel Friction Testing Method in Bulk Metal Forming (체적성형공정에서의 새로운 마찰시험법 제안)

  • Kang, S.H.;Yun, Y.W.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.445-449
    • /
    • 2009
  • With the recent increase in the demand for the net-shape forming, numerical simulations are being commonly adopted to increase the efficiency and effectiveness of design of bulk metal forming processes. Proper consideration of tribological problems at the contact interface between the tool and workpiece is crucial in such simulations. In other words, lubrication and friction play important roles in metal forming by influencing the metal flow, forming load and die wear. In order to quantitatively estimate such friction condition or lubricant characteristic, the constant shear friction model is widely used for bulk deformation analyses. For this, new friction testing method based on the forward or backward extrusion process is proposed to predict the shear friction factor in this work. In this method, the tube-shaped punch pressurizes the workpiece so that the heights at the center and outer of punch (or mandrel) become different according to the friction condition. That is, the height at the center of punch is higher than that at the outer of the punch when the friction condition at the contact interface is severe. From this founding, the proposed friction testing method can be applied to effectively evaluate the friction condition in bulk metal forming processes.

  • PDF

Nonlinear Contact Analysis of the Air Plate in a Fuel Cell (연료전지 공기판의 비선형 접촉 해석)

  • Park, Jung-Sun;Yang, Ji-Hae;Im, Jong-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.22-29
    • /
    • 2004
  • Deformation of the porous media has influence on performance of a proton exchange membrane fuel cell (PEMFC). The stress distributions and deformation of the porous media are major factors for safe and efficient operation in the PEMFC. In this paper, nonlinear contact analysis of air plate and porous media is performed under a working condition to predict the performance characteristics of the air plates. Two kinds of models are suggested for this study. The first porous media model has nonlinear material properties. The second model has nonlinear material properties with contact condition between porous media and air plate. The numerical analysis results of the two models are somewhat different. It is shown that the nonlinear contact analysis is required for the design study of the PEMFC.

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

A Study on Impurity Deposition using of ITO Substrate (ITO기판을 이용한 불순물 증착에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.231-238
    • /
    • 2015
  • In this paper, we have studied a sheet resistance property of N- and P-type thin films deposited on ITO glass by use of RF magnetron sputtering. The N-type samples which has the deposition condition of 150W RF power, shows the highest current value, and the samples deposited for 15 minutes shows a better Ohmic contact property. As the substrate temperature, RF power and deposition time are increased, the sheet resistance of the samples is increased, and the low sheet resistance sample shows a better I-V property. The P-type samples shows the highest current value by 150W RF power condition as similar as N-type samples. and the samples deposited for 20 minutes shows a better ohmic contact property. The sheet resistance of the both types samples is increased as increasing RF power and deposition time.

Effect of Hydrophobic Condition and Water Content on the Spectral Information of Soil Particle Surface (흙 입자 표면의 소수성 조건과 함수비가 분광정보에 미치는 영향)

  • Jeong-Jun, Park;Seung-Kyong, You;Kwang-Wu, Lee;Jung-Mann, Yun;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.93-100
    • /
    • 2022
  • This study describes the evaluation results on the effect of soil particle surfaces coated with various hydrophobic conditions on spectral information according to water content. Wettability test and spectral information evaluation test were performed on the hydrophobic coated standard sand. When the standard sand was coated with 1%, 3%, and 5% hydrophobic, the contact angles of sand-water interface were 130°~143°, 129°~144°, and 131°~144°, respectively. This means that the contact angle increased as the degree of hydrophobic coating increased at the same drying time, but the range of the contact angle had the same wettability. This means that the contact angle increases as the hydrophobic coating degree increases at the same drying time, whereas the contact angle range has the same wettability. As a result of spectral information evaluation, the maximum spectral reflectance of the dried sand with hydrophobic condition decreased compared to that of the hydrophilic sand, as the degree of hydrophobic increased. However, the maximum spectral reflectance was increased by increasing the degree of hydrophobic under the same water content conditions.