• Title/Summary/Keyword: Contact Calculation

Search Result 292, Processing Time 0.035 seconds

A Study on Flexibility Acquisition Method for VLCC Shaft System (VLCC 축계 시스템의 유연성 확보 방안에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.135-139
    • /
    • 2017
  • The main reason for heat accidents occurring at the after stern tube bearing (STB) is excessive local pressure caused by the deflection of the propulsion shaft due to propeller loads. The probability of a heat accident is increased by the low flexibility of the shaft system in very large crude oil carriers (VLCCs) as the engine power and shaft diameter increase and the distance decreases between the forward and after STBs. This study proposed shaft system with only an after STB and no forward STB for a flexibility acquisition method for a VLCC shaft system under hull deformation. A Hertzian contact condition was applied, which assumes a half-elliptical pressure distribution along the contact width for the calculation of the local squeeze pressure. The propeller loads, heat effect, and hull deflection under engine operating conditions are also considered. The results show that the required design criteria were satisfied by building a partial slope at the white metal, which is the material at the axial contact side in the after STB. This system could reduce building cost by simplification of the shaft system.

Experimental Study on Evaluation of Rotational Resistance of Multi-Span Greenhouse Foundations (연동비닐하우스 기초의 회전저항성능 평가에 관한 실험적 연구)

  • Lee, Hyunjee;Shin, Jiuk;Kim, Minsun;Choi, Kisun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.5-12
    • /
    • 2018
  • The foundation of the multi-span greenhouse structures is designed with small shallow concrete foundation considering mainly the vertical load. However, recently, due to an abnormal climate such as strong wind, horizontal load and up-lift load over design strength are applied to the foundation, causing safety problems of the greenhouse foundation. In order to reasonably evaluate the safety of greenhouse foundations, rotational and pullout stiffness expressed by the ground-foundation interaction should be evaluated, which also affects the safety of the upper structural members. In this study, three representative basic foundation types were selected by classifying greenhouse standards in Korea according to the shape, and the horizontal loading tests and theoretical calculation were performed for each foundation type. As a result of the comparison and analysis of the test and calculation, it was found that rotational resistance of the foundation is different according to the ratio of the contact area between the foundation and ground when the conditions of the foundation - ground contact surface and the mechanical properties of the ground are the same.

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

A Feasibility Study on Shale Gas Plant Water Treatment by Direct Contact Membrane Distillation (셰일가스 플랜트 용수 처리를 위한 직접 접촉 막 증발법 적용 가능성 연구)

  • Koo, Jae-Wuk;Han, Jihee;Lee, Sangho;Hong, Seungkwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.56-60
    • /
    • 2013
  • Non-conventional oil resources such as shale gas are becoming increasingly important and have drawn the attention of several major oil companies all over the world. Nevertheless, the market-changing growth of shale gas production in recent years has resulted in the emergence of environmental and water management challenges. This is because the water used in the hydraulic fracturing process contains large amount of pollutants including ions, organics, and particles. Accordingly, the treatment of this flowback water from shale gas plant is regarded as one of the key technologies. In this study, we examined the feasibility of membrane distillation as a treatment technology for the water from shale gas plants. Direct contact membrane distillation (DCMD) is a thermally-driven process based on a vaper pressure gradient across a hydrophobic membrane, allowing the treatment of feed waters containing high concentration of ions. Experiments were carried out put in the lab-scale under various conditions such as membrane types, temperature difference, flow rate and so on. Synthetic feed water was prepared and used based on the data from literature. The results indicated that DCMD is suitable for treating not only low-range flowback water but also high-range flowback water. Based on the theoretical calculation, DCMD could have over 80% of recovery. Nevertheless, organic pollutants such as oil and surfactant were identified as serious barriers for the application of MD. Further works will be required to develop the optimum pretreatment for this MD process.

Design Improvement of Mechanical Transmission for Tracked Small Agricultural Transporters through Gear Strength Analysis

  • Kim, Hong-Gon;Jo, Yeon-Ju;Kim, Chul-Soo;Han, Yong-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Purpose: The gear strength of a new mechanical transmission designed to increase the loading weight of small 4.8 kW tracked agricultural transporters was analyzed. Design improvements to increase the gear strength and reduce the gear weight were proposed after examining the parameters. Methods: Sixteen operators from three regions were surveyed to obtain the usage profile of small 4.8 kW transporters. Gear strength was evaluated by calculating contact stress and tooth root stress using commercial software following ISO 6336. Results: From the strength calculation for each gear pair, contact stress smaller than tooth root stresses were produced in all gear pairs. The safety factors in most cases exceeded 1.0, except in the case of gear pair II in group II. The design life of the transporter using gear pair II in group II was 42% under harsh conditions-thus, this design life needs improvement. A robust design was proposed by examining the relevant parameters (face width and profile shift coefficient) to increase the design life of the transporter. In addition, a lightweight design for gear pair I in group II that was considered overdesigned was proposed by examining the face width to reduce the weight of the drive gear by 42% and that of the driven gear by 30%. Conclusions: The Safety factor for the design life was examined through a gear strength analysis. After examining the relevant parameters, conditions for strength improvement were proposed to increase design life or adjust overdesigned gear. However, load conditions differ depending on the working conditions or user's preferences; therefore, it is necessary to conduct further studies in various regions.

Let's feel warmth with VR sensing modeling (온기를 느끼게 하는 VR 센싱 모델링)

  • Moon, Dongmin;Chin, Seongah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.341-346
    • /
    • 2020
  • Motion sickness or dizziness caused by visual and other sensory inconsistencies In virtual reality content seems to be a major problem. To solve the problem, research has been actively underway to satisfy the five senses. Among them, the most researches on the touch are many studies on hardness and texture, but the studies on temperature seem relatively small. Therefore, in this paper, we present a calculation model that can sense the temperature derived from the principle of heat energy moving from high temperature to low temperature, not the temperature of the material. Because heat energy is determined by the heat conductivity, temperature, and area of contact, which are the inherent characteristics of a material, the degree of heat felt by a person depends on the type of material, the temperature of the material and the area of contact with the object. The thermal energy shift per unit time of the material was calculated using the thermal conductivity law and the specific heat formula, and the thermal energy reproduction method that changes per unit time of the material was studied using the thermoelectric element.

Two-Arm Cooperative Assembly Using Force-Guided Control with Adaptive Accommodation (적응 순응성을 갖는 힘-가이드 제어 기법을 이용한 두 팔 로봇 협동 조립작업)

  • Choi, Jong-Dho;Kang, Sung-Chul;Kim, Mun-Sang;Lee, Chong-Won;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.298-308
    • /
    • 2000
  • In this paper a new two-arm cooperative assembly(or insertion) algorithm is proposed. As a force-guided control method for the cooperative assembly the adaptive accommodation controller is adopted since it does not require any complicated contact state analysis nor depends of the geometrical complexity of the assembly parts. Also the RMRC(resolved motion rate control) method using a relative jacobian is used to solve inverse kinematics for two manipulators. By using the relative jacobian the two cooperative redundant manipulators can be formed as a new single redundant manipulator. Two arms can perform a variety of insertion tasks by using a relative motion between their end effectors. A force/torque sensing model using an approximated penetration depth calculation a, is developed and used to compute a contact force/torque in the graphic assembly simulation . By using the adaptive accommodation controller and the force/torque sensing model both planar and a spatial cooperative assembly tasks have been successfully executed in the graphic simulation. Finally through a cooperative assembly task experiment using a humanoid robot CENTAUR which inserts a spatially bent pin into a hole its feasibility and applicability of the proposed algorithm verified.

  • PDF

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Proposal of a Monitoring System to Determine the Possibility of Contact with Confirmed Infectious Diseases Using K-means Clustering Algorithm and Deep Learning Based Crowd Counting (K-평균 군집화 알고리즘 및 딥러닝 기반 군중 집계를 이용한 전염병 확진자 접촉 가능성 여부 판단 모니터링 시스템 제안)

  • Lee, Dongsu;ASHIQUZZAMAN, AKM;Kim, Yeonggwang;Sin, Hye-Ju;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • The possibility that an asymptotic coronavirus-19 infected person around the world is not aware of his infection and can spread it to people around him is still a very important issue in that the public is not free from anxiety and fear over the spread of the epidemic. In this paper, the K-means clustering algorithm and deep learning-based crowd aggregation were proposed to determine the possibility of contact with confirmed cases of infectious diseases. As a result of 300 iterations of all input learning images, the PSNR value was 21.51, and the final MAE value for the entire data set was 67.984. This means the average absolute error between observations and the average absolute error of fewer than 4,000 people in each CCTV scene, including the calculation of the distance and infection rate from the confirmed patient and the surrounding persons, the net group of potential patient movements, and the prediction of the infection rate.

Hydrophilicity Improvement of Polyamide66/Polyphenylene Blends by Plasma Surface Treatment (Polyamide66/Polyphenylene 블렌드의 플라스마 표면처리를 통한 친수성 향상)

  • Ji Young-Yeon;Kim Sang-Sik
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.391-396
    • /
    • 2006
  • It has been reported that plasma treatments are used to modify surface properties of polymers such as adhesivity hydrophobicity and hydrophilicity. Using plasma treatment, interfacial pro-perty can be introduced to a polymer surface without affecting the desired bulk properties of a material. In this study, commercial polyamide66 (PA66) /polyphenylene (PPE) polymer was modified by plasma treatment under a various gas specious for elimination of organic compound and polymer surface property with hvdrophilicity. PA66/PPE polymer with hydrophilicity was treated by RF plasma vacuum system under a various parameter such as gas specious, processing time and partial pressure. Hydrophilicity of PA66/PPE was confirmed by calculation of the surface free energy from contact angle measurement. The highest surface free energy of $50.03 mJ/m^2$ with the lowest contact angle of $14^{\circ}$ was obtained at plasma process power of 100 W, treatment time of 2 min and $Ar/O_2$ gases of 100 and 200 sccm. Moreover the change of organic compounds on the polymer surface was analyzed by fourier transforms infrared spectrometry (FTIR).