• Title/Summary/Keyword: Contact Binary

Search Result 105, Processing Time 0.033 seconds

CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris (근접촉쌍성 XZ CMi의 CCD 측광관측과 광도곡선 분석)

  • Kim, Chun-Hwey;Park, Jang-Ho;Lee, Jae-Woo;Jeong, Jang-Hae;Oh, Jun-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of $-5.26{\times}10^{-11}d/P$ was interpreted as a result of simultaneous occurrence of both a period decrease of $-8.20{\times}10^{-11}d/P$ by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of $2.94{\times}10^{-11}d/P$ by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasing rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of $\dot{M}_s=3.21{\times}10^{-8}M_{\odot}y^{-1}$ from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of $\sum(O-C)^2$ between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.

ORBITAL PERIOD VARIATION AND MORPHOLOGICAL LIGHT CURVE STUDIES FOR THE W UMa BINARY BB PEGASI

  • Hanna, Magdy A.;Awadalla, Nabil S.
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.3
    • /
    • pp.97-108
    • /
    • 2011
  • The photometric light curves of the W-type W UMa eclipsing contact binary system BB Pegasi have been found to be extremely asymmetric over all the observed 63 years in all wavelengths UBVR. The light curves have been characterized by occultation primary minima. Hence, the morphology of these light curves has been studied in view of these different asymmetric degrees. The system shows a distinct O'Connell effect, as well as depth variation. A 22.96 years of stellar dark spots cycle has been determined for the system. Almost the same cycle (22.78 yr) has been found for the depth variation of MinI and MinII. We also present an analysis of mid-eclipse time measurements of BB Peg. The analysis indicates a period decrement of $5.62{\times}10^{-8}$ day/yr, which can be interpreted in terms of mass transfer at a rate of $-4.38{\times}10^{-8}M_{\odot}$/yr, from the more to the less massive component. The O - C diagram shows a damping sine wave covering two different cycles of 17.0 yr and 12.87 yr with amplitudes equal to 0.0071 and 0.0013 day, respectively. These unequal durations show a non-periodicity which may be explained as a result of magnetic activity cycling variations due to star spots. The obtained characteristics are consistent with similar chromospherically active stars, when applying the Applegate's (1992) mechanism.

Fundamental parameters of the eclipsing binaries in the Large Magellanic cloud

  • Hong, Kyeong Soo;Kang, Young Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.141.2-141.2
    • /
    • 2012
  • We present photometric solutions of the 26,212 eclipsing binaries discovered in the LMC by Graczyk et al. (2011). They published that 70 percent of a total are detached systems. Another 25 and 5 percent are semi-detached and contact binaries, respectively. We discovered that 21 percent of 26,121 eclipsing binary stars are eccentric orbit systems. The binary star distribution in the LMC is different from those of the Galactic center direction (Bade window). It is very interesting that there are only 5 of 357 (2 percent) stars have eccentric orbit in the Galactic Center (Kang 2011). We selected the light curve of 18,274 detached systems. Then we estimated the fundamental parameters on the basis of their photometric solutions and the semi-major-axis (a) assuming the distance modulus to the LMC~18.50. We compared the estimated fundamental parameters with an empirical mass-luminosity relation and consistency between mass-radius relation base on stellar evolution model in the low metallicity (Z=0.008) by Bertelli et al. (2009). This method allows for independent determine of the fundamental parameters of the eclipsing binaries in the LMC without the radial velocity curves.

  • PDF

UY Ursae Majoris: An A-Subtype W UMa System with a Very Large Fill-Out Factor and an Extreme Mass Ratio

  • Kim, Chun-Hwey;Song, Mi-Hwa;Park, Jang-Ho;Jeong, Min-Ji;Kim, Hye-Young;Han, Cheongho
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.265-281
    • /
    • 2019
  • We present new BVRI light curves of UY UMa with no O'Connell effect and a flat bottom secondary eclipse. Light curve synthesis with the Wilson-Devinney code gives a new solution, which is quite different from the previous study: UY UMa is an A-subtype over-contact binary with a small mass ratio of q = 0.21, a high inclination of 81°.4, a small temperature difference of ΔT=18°, a large fill-out factor of f = 0.61, and a third light of approximately 10% of the total systemic light. The absolute dimensions were newly determined. Seventeen new times of minimum light have been calculated from our observations. The period study indicates that the orbital period has intricately varied in a secular period increase in which two cyclical terms with periods of 12y.0 and 46y.3 are superposed. The secular period increase was interpreted to be due to a conservative mass transfer of 2.68 × 10-8 M/yr from the less massive to the more massive star. The cyclical components are discussed in terms of double-light time contributions from two additional bound stars. The statistical relations of Yang & Qian (2015) among the physical parameters of 45 deep, low mass ratio contact binaries were revisited by using the physical parameters of UY UMa and 25 Kepler contact binaries provided by Şenavci et al. (2016).

PHOTOMETRIC OBSERVATIONS AND LIGHT CURVE ANALYSIS OF BL ERIDANI (BL ERIDANI의 측광관측과 광도곡선 분석)

  • Han, Won-Yong;Yim, Hong-Suh;Lee, Chung-Uk;Youn, Jae-Hyuck;Yoon, Joh-Na;Kim, Ho-Il;Moon, Hong-Kyu;Byun, Yong-Ik;Park, Sun-Youp
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.319-326
    • /
    • 2006
  • We present light curves of a short period binary system BL Eridani. The light curves were observed with VRI filters by a 50cm wide field robotic telescope at Siding Spring Observatory (SSO), equipped with a 2K CCD camera, which was developed by Korea Astronomy and Space Science Institute (KASI), and Yonsei University Observatory(YUO). The photometric observations were made on 6 nights by automatic operation mode and remote observation mode at SSO and KASI in Korea, respectively. We obtained new VRI CCD light curves and new 5 times of minima, and analyzed the light corves with the Wilson & Deviney (1971) binary 2005 version and derived the new photometric solutions. The mass ratio q=0.48 in this study shows different value with earlier investigators. According to the model analysis, it is considered that the BL Eri system is currently undergoing contact stage of the two binary components, rather than near-contact stage.

PERIOD CHANCE OF THE CONTACT BINARY AH Tauri (접촉쌍성 AH Tauri의 공전주기 변화)

  • Lee, Dong-Joo;Lee, Chung-Uk;Lee, Jae-Woo;Kim, Seung-Lee;Oh, Kyu-Dong;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.283-294
    • /
    • 2004
  • New BV RI photometric observations of the contact binary AH Tau were performed with the 61 cm reflector and a 2K CCD camera at the Sobaeksan Optical Astronomy Observatory during seven nights from September to December, 2001. A total of 144 times of minima observed up to date, including three times of minima obtained from our observation, were analyzed. It is found that the orbital period of AH Tau has varied in a cyclic way superposed on a secular period decrease. The rate of the secular period decrease is calculated to be $1^s$ .04 per century, implying that a mass of about $3.8{\times}10^{-8}M{\odot}/yr$ from the more massive primary flows into the secondary if a conservative mass transfer is assumed. Assuming that the sinusoidal period variation is produced by a light-time effect due to an unseen third body, the resultant semi-amplitude, period, and eccentricity for the deduced light-time orbit are obtained as 35.4 years, 0.014 day and 0.52, respectively. The mass of the third-body is calculated as a tout $0.24M{\odot}$ when the third body is assumed to be coplanar with AH Tau system.

A PERIOD STUDY OF THE NEAR CONTACT BINARY EG CEP (근접촉쌍성 EG Cep의 공전주기 연구)

  • Kim Chun-Hwey;Jeong Jang-Hae;Lee Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.105-116
    • /
    • 2006
  • New eight times of minimum light of the near-contact binary EG Cep were presented. All times of minimum light for EG Cep, including ours, were collected and analyzed to study it's orbital period variation. It was found that the orbital period have varied in a cyclical way superposed on an upward parabola. A secular period increase of $3.22{\times}10^{-8}d/y$ was calculated. Under the assumption of a conservative mass transfer, it implied that the stellar gaseous material of about $3.18{\times}10^{-8}M_{\odot}$ /year is transferring from the less massive secondary component to the primary. The cyclical period variation was interpreted as light-time effect due to an unseen third body in the system. The resultant period, semi-amplitude and eccentricity of the light time orbit were calculated to be $38.^y4,\;0.^d0034$ and 0.29, respectively. The mass range of the tertiary proposed in the system is deduced to be quite small as $0.10M_{\odot}{\leq}M_3{\leq}0.21M_{\odot}$ for $i_3{\geq}30^{\circ}$.

Hybrid Spray and Wait Routing Protocol in DTN (DTN에서 Hybrid Spray and Wait 라우팅 프로토콜)

  • Hyun, Sung-Su;Jeong, Hyeon-Jin;Choi, Seoung-Sik
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.53-62
    • /
    • 2014
  • DTN is the next generation network that is used in not guaranteed end-to-end connection such as communication between planet and satellite, frequent connection severance, and not enough for qualified network infrastructure. In this paper, we propose the hybrid Spray-and-Wait algorithm to predict the node contact time by monitoring the periodic contacts information between the nodes. Based on this method, we select one node on the basis of prediction time and copy a message for spray and wait algorithm. In order to verify the the hybrid Spray and Wait algorithm, we use the ONE(Opportunistic Network Environment) Simulator of Helsinki University. The delivery probability of the proposed algorithm is compared to the Binary Spray and Wait algorithm, it is showed that it has 10% less overhead than Binary Spray and Wait routing. It has also shown that it reduces unnecessary copying of this message.

PHOTOMETRIC SOLUTIONS OF W UMA TYPE STARS: GSC2576-0319 AND GSC2584-1731 (W UMa형 식쌍성 GSC2576-0319와 GSC2584-1731의 측광해)

  • Lee, Chung-Uk;Lee, Jae-Woo;Jin, Ho;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2006
  • High-precision photometric observations were performed in BVI bandpasses using Am robotic telescope at Mt. Lemmon Observatory for two binary stars, which are reclassified as W UMa-type systems from ROTSE(Robotic Optical Transient Search Experiment) follow-up observations and show peculiar light variations. In order to analyze W UMa-type eclipsing binaries systematically, the light curve analysis script using 2005 version of Wilson-Devinney binary code is constructed. The orbital inclinations of GSC2S84-1731 and GSC2576-0319 are $43.^{\circ}5\;and\;57.^{\circ}6$ from light-curve analysis, respectively. Spot model is applied to explain the asymmetric light curve for GSC2S84-1731 and the spot parameters are derived.

Reversible Data Hiding based on QR Code for Binary Image (이진 이미지를 위한 QR 코드 기반의 가역적인 데이터 은닉)

  • Kim, Cheonshik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.281-288
    • /
    • 2014
  • QR code (abbreviated from Quick Response Code) is code system that is strong in against to apply image processing techniques (skew, warp, blur, and rotate) as QR codes can store several hundred times the amount of information carried by ordinary bar codes. For this reason, QR code is used in various fields, e.g., air ticket (boarding control system), food(vegetables, meat etc.) tracking system, contact lenses management, prescription management, patient wrist band (patient management) etc. In this paper, we proposed reversible data hiding for binary images. A reversible data hiding algorithm, which can recover the original image without any distortion from the marked (stego) image after the hidden data have been extracted, because it is possible to use various kinds of purposes. QR code can be used to generate by anyone so it can be easily used for crime. In order to prevent crimes related QR code, reversible data hiding can confirm if QR code is counterfeit or not as including authentication information. In this paper, we proved proposed method as experiments.