• Title/Summary/Keyword: Consumptive

Search Result 114, Processing Time 0.025 seconds

Leisure Activities and Cognitive Function in Korean Older Adults (한국 남녀 노인의 여가활동 참여와 인지기능의 관계)

  • Chung, Eunyoung
    • 한국노년학
    • /
    • v.40 no.3
    • /
    • pp.443-458
    • /
    • 2020
  • Aim: This study investigated the association between leisure activities and cognitive impairment in Korean community-dwelling older adults. Methods: Among participants of the 2017 National Survey of Older Koreans, 10,055 (male=4,277, female=5,778) were included in this cross-sectional study. To better identify the association between late-life cognition and leisure activities, individual leisure activities were categorized into 3 types including productive, consumptive, and unclassified activities. Multivariate logistic regression analysis was performed to assess the association between participation in leisure activities and cognitive impairment when controlling for possible covariates evidenced by previous studies. Results: Male participants were more likely to be cognitively impaired than female ones with significant differences in all the covariates. After controlling for confounding variables, involvement in productive leisure activities was found to be associated with cognitive function in both male and female groups, along with age, educational level, depressive symptoms, subjective hearing problems, and occupational status. Conclusion: Involvement in productive leisure activities might be associated with decreased risk of cognitive impairment in later life. Appropriate strategies to encourage older adults to participate in productive leisure activities should be established to help them maintain their cognitive function.

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops -Tomato and Chinese Cabbage- (밭작물소비수량에 관한 기초적 연구 -토마토 및 가을배추-)

  • 김철기;김진한;최홍규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.25-37
    • /
    • 1988
  • The purpose of this study is to fmd out the bask data for irrigation plans of tomato and chinese cabbage during the growing period, such as total amount of evapotranspiration, coefficients of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum evapotranspiration, optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soji texture for split plot, and three levels, irrigation points with PF 1.8, PF 2.2, PF 2.6 for tomato and those with PF 1.9, PF 2.3, PF 2.7, for Chinese cabbage, soil textures of silty clay, sandy loam and sandy soil for both tomato and Chinese cabbage, with two replications. The results obtained are summarized as follows 1. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteoralogical factors considered. Therefore, the pan evaporation is enough to be used as a meteorological index measuring the quantity of evapotranspiration. 2. 1/10 probability values of maximum total pan evaporation during growing period for tomato and Chinese cabbage were shown as 355.8 mm and 233.0 mm, respectively, and those of maximum ten day pan evaporation for tomato and Chinese cabbage, 68.0 mm and 43.8 mm, respectively. 3. The time that annual maximum of ten day pan evaporation can be occurred, exists at any stage of growing period for tomato, and at any growth stage till the late of Septemberfor Chinese cabbage. 4. The magnitude of evapotranspiration and of its coefficient for tomato and Chinese cabbage was occurred in the order of pF 1.8>pF 2.2>pF 2.6 and of pF 1.9>pF 2.3>pF 2.7 respectively in aspect of irrigation point and of silty clay>sandy loam>sandy soil in aspect of soil texture. 5. 1/10 probability value of evapotranspiration and its coefficient during the growing period of tomato were shown as 327.3 mm and 0.92 respectively, while those of Chinese cabbage, 261.0 mm and 1.12 respectively. 6. The time that maximum evapotranspiration of tomato can be occurred is at the date of fortieth to fiftieth after transplanting and the time for Chinese cabbage is presumed to he in the late of septemben At that time, 1/10 probability value of ten day evapotranspiration and its coefficient for tomato is presumed to be 74.8 mm and 1.10 respectively, while those of Chinese cabbage, 43.8 mm and 1.00. 7. In aspect of only irrigaton point, the weight of raw tomato and Chinese cabbage were mcreased in the order of pF 2.2>pF 1.8>pF 2.6 and of pF 1.9>pF 2.3>pF 2.7, respectively but optimum irrigation point for tomato and Chinese cabbage, is presumed to be pF 2.6 - 2.7 if nonsignificance of the yield between the different irrigation treatments, economy of water, and reduction in labour of irrigaion are synthetically considered. 8. The soil moisture extraction patterns of tomato and Chinese cabbage have shown that maximum extraction rate exists at 7 cm deep layer at the beginning stage of growth m any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates of 21 cm deep layer and 35 cm deep layer have shown tendency to be more increased in silty clay than in any other soils. 9. As optimum irrigation point is presumed to be pF Z6-2.7, total readily available moisture of tomato in silty clay, sandy loam and sandy sofl becomes to be 19.06 mm, 21.37 mm and 20.91 mm respectively while that of Chinese cabbage, 18.51 mm, 20.27 mm, 21.11 mm respectively. 10. On the basis of optimum irrigation point with pF 2.6 - 2.7 the intervals of irrigation date of tomato and Chinese cabbage at the growth stage of maximum consumptive use become to be three days and five days respectively.

  • PDF

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (3) -Red Pepper and Radish- (밭작물 소비수량에 관한 기초적 연구(III)-고추 및 가을 무우-)

  • 김철기;김진한;정하우;최홍규;권영현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-71
    • /
    • 1990
  • The purpose of this study is to find out the basic data for irrigation plans of red pepper and radish during the growing period, such as total amount of evapotranspiration, coefficent of evapotranspiration at each growth stage, the peak stage of evapotranspiration, the maximum ten day evapotranspiration , optimum irrigation point, total readily available moisture and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation point with pH1.7-2.0, pF2.1-2.4 and pF2.5-2.8, at soil texture of sandy soil, sandy loam and silty clay for both red pepper and radish, with two replications. The results obtained are summarized as follows. 1.1/10 exceedance probability values of maximum total pan evaporation during growing period for red peppr and radish were shown as 663.6 mm and 251.8 mm. respectively, and those of maximum ten day pan evaporation for red pepper and radish, 67.1 mm and 46.9 mm, respectively. 2.The time that annual maximum of ten day pan evaporation can he occurred, exists at any stage between the middle of May and the late of August for red pepper, and at any stage between the late of August and the late September for radish. 3.The magnitude of evapotranspiration and its coefficient for red pepper was occurred large in order of pF1.7-2.0 pF2.1-2.4 and pF2.5~2.8 in aspect of irrigation point and the difference in the magnitude of evapotranspiration and of its coefficient between levels of irrigation point was difficult to be found out due to the relative increase in water consumption resulted from large flourishing growth at the irrigation point in lower water content for radish. In aspect of soil texture they were appeared large in order of sandy loam, silty clay and sandy soil for both red pepper and radish. 4.The magnitude of leaf area index was shown large in order of pF2.1-2.4, pF2.5-2.8, and pFl.7-2.0, for red pepper and of pF2.5-2.8, pF2.1-2.4, pFl.7-2.0 for radish in aspect of irrigation point, and large in order of sandy loam, silty clay, sandy soil for both red pepper and radish in aspect of soil texture 5.1/10 exceedance probability value of evapotranspiration and its coefficient during the growing period for red pepper were shown as 683.5 mm and 1.03, respectively, while those of radish, 250.3 mm and 0, 99. respectively. 6.The time that the maximum evapotranspiration of red pepper can be occurred is in the middle of August around the date of ninetieth to hundredth after transplanting, and the time for radish is presumed to be in the late of September, around the date of thirtieth to fourtieth after sowing. At that time, 1/10 exceedance probability value of ten day evapotranspiration and its coefficient for red pepper is assumed to be 81.8 mm and 1.22, respectively, while those of radish, 49, 7 mm and 1, 06, respectively. 7.Optimum irrigation point for red pepper on the basis of the yield of raw matter is assumed to be pFl.7-2.0 for sandy soil, pF2.5-2.8 for sandy loam, and pF2.1-2.4 for silty clay. while that for radish is appeared to be pF2.5-2.8 in any soil texture used. 8.The soil moisture extraction patterns of red pepper and radish have shown that maximum extraction rates exist at 7 cm deep layer at the beginning stage of growth in any soil texture and that extraction rates of 21 cm to 35 cm deep layer are increased as getting closer to the late stage of growth. And especially the extraction rates have shown tendency to be greatest at 21cm deep layer from the most flourishing stage of growth for red pepper and at the last stage of growth for radish. 9.The total readily available moisture on the basic of the optimum irrigation point become 3.77-8.66 mm for sandy soil, 28.39-34.67 mm for sandy loam and 18.40-25.70 mm for silty clay for red pepper of each soil texture used but that of radish that has shown the optimum irrigation point of pF2.5-2.8 in any soil texture used. 12.49-15.27 mm for sandy soil, 23.03-28.13 mm for sandy loam, and 22.56~27.57 mm for silty clay. 10.On the basis of each optimum irrigation point. the intervals of irrigation date at the growth stage of maximum consumptive use of red pepper become l.4 days for sandy soil, 3.8 days for sandy loam and 2.6 days for silty clay, while those of radish, about 7.2 days.

  • PDF

Basic Studies on the Consumptive Use of Water Required for Dry Field Crops (2) -Garlic and Cucumber- (밭작물소비수량에 관한 기초적 연구(II)-마늘 및 오이-)

  • 김철기;김진한;정하우;최홍규;권영헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study is to find out the basic data for irrigation plans of garlic and cucumber during the growing period, such as total amount of evapotranspiration, coefficients of evapotranspiration at each growth stage, the peak stage of evapotranspiration and the maximum evapotranspiraton, optimum irrigation point, total readily available moisture, and intervals of irrigation date. The plots of experiment were arranged with split plot design which were composed of two factors, irrigation point for main plot and soil texture for split plot, and three levels ; irrigation points with pP 1.7-2.1, pP 2.2-2.5, pP 2.6-2.8, for garlic and those with pP 1.9, pF 2.3, pP 2.7, for cucumber, soil textures of silty clay, sandy loam and sandy soil for both garlic and cucumber, with two replications. The results obtained are summarized as follows 1.There was the highest significant correlation between the avapotranspiration of garlic and cucumber and the pan evaporation, beyond all other meteorological factors considered, as mentioned in the previous paper. Therefore, the pan evaporation is enough to be used as a meteorological index measuring the quantity of evapotranspiration. 2.1/10 probability values of maximum total pan evaporation during growing period for garlic and cucumber were shown as 495.8mm and 406.8mm, respectively, and those of maximum ten day pan evaporation for garlic and cucumber, 63.8mm and 69.7mm, respectively. 3.The time that annual maximum of ten day pan evaporation can be occurred, exists at any stage between the middle of May and the late of June(harvest period) for garlic, and at any stage of growing period for cucumber. 4.The magnitude of evapotranspiration and of its coefficient for garlic and cucumber was occurred in the order of pF 1.7-2.1>pF 2.2-2.5>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF2.7 respectively in aspect of irrigation point and of sandy loam>silty clay>sandy soil in aspect of soil texture for both garlic and cucumber. 5.The magnitude of leaf area index was shown in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 for garlic and of pF 1.9>pF 2.3>pF 2.7 for cucumber in aspect of irrigation point, and of sandy loam>sandy soil>silty clay in aspect of soil texture for both garlic and cucumber. 6.1/10 probability value of evapotranspiration and its coefficient during the growing period for garlic were shown as 391.7mm and 0.79 respectively, while those of cucumber, 423.lmm and 1.04 respectively. 7.The time the maximum evapotranspiration of garlic can be occurred is at the date of thirtieth before harvest period and the time for cucumber is presumed to be at the date of sixtieth to seventieth after transplanting, At that time, 1/10 probability value of ten day evapotranspiration and its coefficient for garlic is presumed to be 65.lmm and 1.02 respectively, while those of cucumber, 94.8mm and 1.36 respectively. 8.In aspect of irrigation point, the weight of raw garlic and cucumber were increased in the order of pF 2.2-2.5>pF 1.7-2.1>pF 2.6-2.8 and of pF 1.9>pF 2.3>pF 2.7 respectively. Therefore, optimum irrigation point for garlic and cucumber is presumed to be pF 2.2-2.5 and pF 1.9 respectively, when the significance of yield between the different irrigation treatments is considered. 9.Except the mulching period of garlic that soil moisture extraction patterns were about the same, those of garlic and cucumber have shown that maximum extraction rate exists at 7cm deep layer at the beginning stage after removing mulching for garlic and at the beginning stage of growth for cucumber and that extraction rates of 21cm to 35cm deep layer are increased as getting closer to the late stage of growth. 10.Total readily available moisture of garlic in silty clay, sandy loam, sandy soil become to be 18.71-24.96mm, 19.08-25.43mm, 10.35- 13.80mm respctively on the basis of the optimum irrigation point with pF 2.2-2.5, while that of cucumber, 11.8lmm, 12.03mm, 6.39mm respectively on the basis of the optimum irrigation point with pF 1.9. 11.The intervals of irrigation date of garlic and cucumber at the growth stage of maximum consumptive use become to be about three and a half days and one and a half days respectively, on the basis of each optimum irrgation point.

  • PDF

Estimation of Crop Virtual Water in Korea (한국의 농산물 가상수 산정)

  • Yoo, Seung-Hwan;Choi, Jin-Yong;Kim, Tae-Gon;Im, Jeong-Bin;Chun, Chang-Hoo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.911-920
    • /
    • 2009
  • Virtual water is defined as the volume of water required to produce a commodity or service. The degree of food self-sufficiency is currently about 27 % in South Korea, so that Korea is one of the largest net virtual water import countries for agricultural product, thus it is necessary to estimate suitable virtual water for South Korea. The objective of this paper is to quantify the agricultural virtual water use (AWU) and virtual water content (VWC) using the method suggested by Chapagain and Hoekstra during the period 1991-2007. To calculate the virtual water content, 44 different crop production quantity and harvested area data were collected for 17 years and FAO Penman-Monteith equation was adapted for computing crop consumptive use of water. As the results, AWU has been estimated at 15.1 billion $m^3$ in average showing a tendency to decrease. Rice has the largest share in the AWU, consuming about 10.1 billion $m^3$/yr which is about 75 % of gross AWU, and the VWC is 1600.1 $m^3$/ton for paddy rice. The largest VWCs of crops are oilseed and tuber crop, and the smallest are leaf and root vegetables. The primary crop production VWC can be used for calculating the VWC of various secondary products using the contribution ratio, therefore the results of this study are expected to be used as basic data for national agricultural water footprint.

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF

Protective Effect of Rehmanniae Radix Preparata Extract on $H_2O_2$-induced Apoptosis of ECV304 Cells (숙지황(熟地黃) 추출물이 $H_2O_2$에 의해 유도된 ECV304 세포의 apoptosis에 미치는 영향)

  • Kim, In-Gyu;Ju, Sung-Min;Park, Jin-Mo;Jeon, Byung-Jae;Yang, Hyun-Mo;Kim, Won-Sin;Jeon, Byung-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.76-83
    • /
    • 2009
  • Rehmannia Radix Preparata (RRP) used to nourish Eum and enrich blood for consumptive fever, aching, and limpness of the loins and knees, and to replenish essence for tinnitus, premature greying of beard and hair. In the present study, we studied about the protective effect of RRP on hydrogen peroxide-induced oxidative stress in human vascular endothelial cells. ECV304 cells were preincubated with RRP (100, 200, 300 and $400{\mu}g/m{\ell}$) for 12hr and then treated with $600{\mu}M$ $H_2O_2$ for 12hr. The protective effects of RRP on $H_2O_2$-induced apoptosis in ECV304 cells was determined by using MTT assay, FDA-PI staining, flow cytometric analysis, caspase-3 activity assay, ROS assay and western blot. The results of this experiment showed that RRP inhibited $H_2O_2$-induced apoptosis and ROS production in ECV304 cells. Moreover, RRP increased ERK activation that decreased in $H_2O_2$-treated ECV304 cells, and inhibited p38 and JNK activation. Furthermore, RRP increased expression of heme oxygenase-1 (HO-1) in $H_2O_2$-treated ECV304 cells. Also, HO-1 protein expression induced by RRP was reduced by the addition of ERK inhibitor (PD98059) in $H_2O_2$-treated ECV304 cells. These results suggest that protective effect of RRP on $H_2O_2$-induced oxidative stress in ECV304 cells may be associated with increase of ERK activation and HO-1 protein, and reduction of p38 and JNK activation.

Effects of the Leisure Activity and Social Support of the Elderly on Their Psychological Well-Being (노인의 여가활동과 사회적 지지가 심리적 복지감에 미치는 영향)

  • Lee, Gab-Suk;Lim, Wang-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.10
    • /
    • pp.291-306
    • /
    • 2012
  • The Purpose of this study was to investigate the effects of the leasure activity and social support of the elderly people on their psychological well-being and the moderating role of social support. For this study, data were collected from 347 old people participating in the leasure activity programs operated by 10 facilities for the aged in Seoul, using structured questionnaires. Hierarchical regression analysis technique was used as a main data analysis method for hypothesis test. This study found that productive leasure activity had a beneficial effect on psychological well-being of the elderly measured in terms of life satisfaction and loneliness, whereas consumptive leasure activity had a positive effect only on life satisfaction; that, with regard to social support, spouse support had the most important effect on life satisfaction, followed by friend support and children support, whereas friend support had the most important effect on loneliness, followed by spouse support; and that the relationship between productive leasure activity and life satisfaction was moderated by spouse support and friend support, whereas the relationship between productive leasure activity and loneliness was moderated by friend support.

Study on Mechanistic Pattern Identification of Disease for Uterine, Urine and Excrements Parts of DongEuiBoGam NaeGyungPyen ("동의보감(東醫寶鑑)" "내경편(內景篇)"의 포(胞), 소변(小便), 대편(大便)에 나타난 질병(疾病)의 변증화(辨證化) 연구)

  • Kim, Yeong-Mok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.727-736
    • /
    • 2010
  • This study is about researching mechanistic pattern identification of disease for DongEuiBoGam NaeGyungPyen by analysing with pattern identification of modern Traditional Korean medical patholgy as more logical, systematic and standardized theory. Disease pattern mechanisms of uterine, urine and excrements parts of DongEuiBoGam NaeGyun gPyen in NaeGyungPyen of DongEuiBoGam are these. Menstrual irregularities in DongEuiBoGam can be classified flui d-humor depletion, blood deficiency, qi deficiency, qi stagnation, qi stagnation complicated by heat, blood stasis, blood deficiency complicated by heat, syndrome of heat entering blood chamber, syndrome of cold entering blood chamber. The disease pattern of abdominal pain after menstruation in DongEuiBoGam is blood deficiency complicated by heat, and a dysmenorrhea represents blood stasis with heat, fluid-humor deficiency. Advanced menstruation represent dual heat of the qi and blood, delayed menstruation is blood deficiency. The disease pattern of inhibited urination in DongEuiBoGam can be classified deficiency heat pattern of kidney yin deficiency(yin deficiency with effulgent fire), kidney qi deficiency, yin deficiency with yang hyperactivity, fluid-humor depletion, spleen-stomach dual deficiency, and excess he at pattern of bladder excess heat. The disease pattern of urinary incontinence in DongEuiBoGam can be classified deficiency pattern of kidney-bladder qi deficiency, consumptive disease, lung qi deficiency, kidney yin deficiency(yin deficiency with effulgent fire), kidney yang deficiency and excess pattern of lower energizer blood amassment, bladder excess heat. And most of them are deficiency from deficiency-excess Pattern Identification. The disease pattern of diarrhea in DongEuiBoGam can be classified deficiency pattern of qi deficiency, qi fall, spleen yang deficiency, kidney yang deficiency and so on and excess pattern of wind-cold-summerheat-dampness-fire, phlegm-fluid retention, dietary irregularities, qi movement stagnation. And most of them are deficiency from deficiency-excess Pattern Identification. Like these, this study identify pattern of disease in DongEuiBoGam by mechanism of disease theory.

The Effects of Irrigation levels on the Yield and the Consumptive Use of Red Pepper (관개수준이 고추의 수확량 및 소비수량에 미치는 영향)

  • 윤학기;정상옥;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.82-91
    • /
    • 1989
  • This study was carried out to get the basic information of irrigation plans for the red pepper, such as optimum irrigation level and irrigation requirement in Taegu and Kyungpook province. In this study, red peppers were cultivated in 6 PVC pot lysimeters filled with 60cm deep clay loam soil. Four tensiometers were installed in each plot to measure the soil water pressure head. Field measurements were made during the period June 6 to October 31, 1988 at the experimental farm of Kvungpook National University. Six levels of irrigation were used. They were PF 1.8-2.0, PF 2.2-2.4, PF 2.8-3.0, FC-PF.1.7, FC-PF 2.2, and FC-PF 2.7. The results obtained from this study are summarized as follows : 1. In case of irrigation levels of narrow ranges of water contents, the higher the soil water content was, the larger the ET was. Hut in case of the irrigation levels returning to the field capacity, the lager the PF value of irrigation point was, the larger the ET was. Considering ET, yield and weight per fruit, the latter is much better than the former irrigation method. 2. The mean daily ET and mean ET ratio for each 10-day period showed that the maximum value occured in the last of August. The ranges of those were 3.74-14.64 mm/day and 0.87-3.40, respectively. These values showed that small during the early stage of growth, large during the middle stage and getting smaller in the last stage. 3. In case of irrigation levels of narrow ranges of water contents, the increase of irrigation water supplied increased the ET. The relationship between the two showed nearly straight line. Most of irrigated water was consumed as ET and the rest as percolation. But, in case of irrigation levels returning to the field capacity, the higher the PF value of irrigation point was, the larger the ET ratio was. However, their relationship didn't show straight line. 4. The irrigation level of PC - PP 2.7 was found to be the optimum irrigation level with respect to the yield, the weight per fruit, stem length, irrigation requirement and percolation quantity. In this case, mean daily ET and mean ET ratio were 6.79 mm/day (total 10052 mm) and 1.67, respectively. The maximum mean daily ET and mean ET ratio for 10-day period were 14.64 mm/day and 3.40, respectively, in the last of August, and the maximum daily ET was 2126 mm/day on August 24. 5. In case of PC - PP 2.7 which is found the optimum irrigation level, mean irrigation water required, mean ET and mean percolation water quantity were 7.44 mm/day, 6.79 mm/day(91.3% of irrigation water), and 0.38 mm/day (5.5% of it), respectively.

  • PDF