• Title/Summary/Keyword: Consumed-Power

Search Result 383, Processing Time 0.027 seconds

Communications Protocol Used in the Wireless Token Rings for Bird-to-Bird

  • Nakajima, Isao;Juzoji, Hiroshi;Ozaki, Kiyoaki;Nakamura, Noboru
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.163-170
    • /
    • 2018
  • We developed a multicast communication packet radio protocol using a time-sharing tablet system ("wireless token ring") to achieve the efficient exchange of files among packet radio terminals attached to swans. This paper provides an overview of the system and the protocol of the packet communications. The packet device forming the main part of the transceiver developed is the Texas Instruments CC2500. This device consists of one call-up channel and one data transmission channel and could improve error frame correction using FEC (forward error correction) with 34.8 kbps MSK and receiving power of at least -64 dBm (output 1 dBm at distance of 200 m using 3 dBi antenna). A time-sharing framework was determined for the wireless token ring using call sign ordinals to prevent transmission right loss. Tests using eight stations showed that resend requests with the ARQ (automatic repeat request) system are more frequent for a receiving power supply of -62 dBm or less. A wireless token ring system with fixed transmission times is more effective. This communication protocol is useful in cases in which frequency resources are limited; the energy consumed is not dependent on the transmission environment (preset transmission times); multiple terminals are concentrated in a small area; and information (position data and vital data) is shared among terminals under circumstances in which direct communication between a terminal and the center is not possible. The method allows epidemiological predictions of avian influenza infection routes based on vital data and relationships among individual birds based on the network topology recorded by individual terminals. This communication protocol is also expected to have applications in the formation of multiple in vivo micromachines or terminals that are inserted into living organisms.

Radiation Analysis by Chemical Treatment of Agricultural Products in Environmental Samples (환경시료 중 농산물에서 화학적 처리 방법에 의한 방사능 분석)

  • Jang, Eun-Sung;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.531-538
    • /
    • 2017
  • Agricultural products produced in the agricultural area around the nuclear power plant are radioactive contamination, which can cause radioactive contamination to the human body. The purpose of this study was to investigate the limit of the radioactivity concentration $^{90}Sr$ for the internal exposure dose evaluation by ingesting the agricultural products collected around the nuclear power plant. The results of the gamma-isotope element analysis were freshly <0.0166-0.0336 Bq / kg for all samples and for artificial radionuclides not detected, and fresh <0.00586-0.0421 Bq / kg for Chinese cabbage, The freshness was 0.106 Bq / kg, and the freshness was 0.0114-0.0901 Bq / kg. 0.0177%, 0.0222%, 0.0376% and 0.00243%, respectively, for Chinese cabbages and large roots, which is lower than the legal standard value of $1mSv/yr{\cdot}man%$. It is considered that the formulas need to be broadly evaluated for the foods consumed by children and adults, taking into consideration the age of the food and the diet

An Efficient Resource Allocation Scheme For An Integrated Satellite/Terrestrial Networks (위성/지상 겸용 망 내 간섭을 고려한 최적 자원 할당 방식)

  • Park, Unhee;Kim, Hee Wook;Oh, Dae-Sub;Jang, Dae-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.298-306
    • /
    • 2015
  • In this paper, we propose an efficient resource allocation scheme for the integrated satellite/terrestrial networks. The proposed scheme is a frequency sharing technique to mitigate the inter-component interferences which can be generated between a satellite beam and terrestrial cells that are operated in the same frequency. The proposed dynamic resource allocation scheme can mitigate the total inter-component interference by optimizing the total transmission power and it can expect a result of which can lead to an increase in capacity. In such a system, the interference situation can be affected by the distributed traffic demands or up/down link communications environments. In this point of view, we evaluate the performance of the total consumed power, the amount of inter-component interference with respect to different traffic distributions and interference environments between the satellite beam and terrestrial systems.

Ultrasonic wireless sensor development for online fatigue crack detection and failure warning

  • Yang, Suyoung;Jung, Jinhwan;Liu, Peipei;Lim, Hyung Jin;Yi, Yung;Sohn, Hoon;Bae, In-hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • This paper develops a wireless sensor for online fatigue crack detection and failure warning based on crack-induced nonlinear ultrasonic modulation. The wireless sensor consists of packaged piezoelectric (PZT) module, an excitation/sensing module, a data acquisition/processing module, a wireless communication module, and a power supply module. The packaged PZT and the excitation/sensing module generate ultrasonic waves on a structure and capture the response. Based on nonlinear ultrasonic modulation created by a crack, the data acquisition/processing module periodically performs fatigue crack diagnosis and provides failure warning if a component failure is imminent. The outcomes are transmitted to a base through the wireless communication module where two-levels duty cycling media access control (MAC) is implemented. The uniqueness of the paper lies in that 1) the proposed wireless sensor is developed specifically for online fatigue crack detection and failure warning, 2) failure warning as well as crack diagnosis are provided based on crack-induced nonlinear ultrasonic modulation, 3) event-driven operation of the sensor, considering rare extreme events such as earthquakes, is made possible with a power minimization strategy, and 4) the applicability of the wireless sensor to steel welded members is examined through field and laboratory tests. A fatigue crack on a steel welded specimen was successfully detected when the overall width of the crack was around $30{\mu}m$, and a failure warnings were provided when about 97.6% of the remaining useful fatigue lives were reached. Four wireless sensors were deployed on Yeongjong Grand Bridge in Souht Korea. The wireless sensor consumed 282.95 J for 3 weeks, and the processed results on the sensor were transmitted up to 20 m with over 90% success rate.

A Wideband Inductorless LNA for Inter-band and Intra-band Carrier Aggregation in LTE-Advanced and 5G

  • Gyaang, Raymond;Lee, Dong-Ho;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.917-924
    • /
    • 2019
  • This paper presents a wideband low noise amplifier (LNA) that is suitable for LTE-Advanced and 5G communication standards employing carrier aggregation (CA). The proposed LNA encompasses a common input stage and a dual output second stage with a buffer at each distinct output. This architecture is targeted to operate in both intra-band (contiguous and non-contiguous) and inter-band CA. In the proposed design, the input and second stages employ a gm enhancement with resistive feedback technique to achieve self-biasing, enhanced gain, wide bandwidth as well as reduced noise figure of the proposed LNA. An up/down power controller controls the single input single out (SISO) and single input multiple outputs (SIMO) modes of operation for inter-band and intra-band operations. The proposed LNA is designed with a 45nm CMOS technology. For SISO mode of operation, the LNA operates from 0.52GHz to 4.29GHz with a maximum power gain of 17.77dB, 2.88dB minimum noise figure and input (output) matching performance better than -10dB. For SIMO mode of operation, the proposed LNA operates from 0.52GHz to 4.44GHz with a maximum voltage gain of 18.30dB, a minimum noise figure of 2.82dB with equally good matching performance. An $IIP_3$ value of -6.7dBm is achieved in both SISO and SIMO operations. with a maximum current of 42mA consumed (LNA+buffer in SIMO operation) from a 1.2V supply.

Design and Implementation of Deep Learning Models for Predicting Energy Usage by Device per Household (가구당 기기별 에너지 사용량 예측을 위한 딥러닝 모델의 설계 및 구현)

  • Lee, JuHui;Lee, KangYoon
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.127-132
    • /
    • 2021
  • Korea is both a resource-poor country and a energy-consuming country. In addition, the use and dependence on electricity is very high, and more than 20% of total energy use is consumed in buildings. As research on deep learning and machine learning is active, research is underway to apply various algorithms to energy efficiency fields, and the introduction of building energy management systems (BEMS) for efficient energy management is increasing. In this paper, we constructed a database based on energy usage by device per household directly collected using smart plugs. We also implement algorithms that effectively analyze and predict the data collected using RNN and LSTM models. In the future, this data can be applied to analysis of power consumption patterns beyond prediction of energy consumption. This can help improve energy efficiency and is expected to help manage effective power usage through prediction of future data.

Analysis of Agricultural Tractor Transmission using Actual Farm Workload (실부하 적용을 통한 농용 트랙터 변속기 해석)

  • Kim, Jeong-Gil;Park, Jin-Sun;Choi, Kyu-Jeong;Lee, Dong-Keun;Shin, Min-Seok;Oh, Joo-Young;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.42-48
    • /
    • 2020
  • The agricultural tractor is a multi-purpose vehicle, which is frequently used in the agricultural field. It must be highly reliable in terms of human safety. Design and analysis of agricultural tractors must be performed using actual agricultural workload to maintain high reliability. Additionally, the frequency with which various components and systems are used must also be taken into consideration. In this study, a tractor is built to measure its workload in the actual field. Further, the measured load was analyzed for various farming tasks. The range of ratios of consumed power to engine power was measured to be 42.6%-87.2%, 75.1%-97%, 26.5%-59.2% for a plow, rotary, and harvest tasks, respectively. The results were fed into a transmission simulation model to analyze the strength and life of the transmission components. We conclude that a more reliable product can be constructed by incorporating the transmission analyses using the actual load.

Design and Evaluation of 32-Bit RISC-V Processor Using FPGA (FPGA를 이용한 32-Bit RISC-V 프로세서 설계 및 평가)

  • Jang, Sungyeong;Park, Sangwoo;Kwon, Guyun;Suh, Taeweon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • RISC-V is an open-source instruction set architecture which has a simple base structure and can be extensible depending on the purpose. In this paper, we designed a small and low-power 32-bit RISC-V processor to establish the base for research on RISC-V embedded systems. We designed a 2-stage pipelined processor which supports RISC-V base integer instruction set except for FENCE and EBREAK instructions. The processor also supports privileged ISA for trap handling. It used 1895 LUTs and 1195 flip-flops, and consumed 0.001W on Xilinx Zynq-7000 FPGA when synthesized using Vivado Design Suite. GPIO, UART, and timer peripherals are additionally used to compose the system. We verified the operation of the processor on FPGA with FreeRTOS at 16MHz. We used Dhrystone and Coremark benchmarks to measure the performance of the processor. This study aims to provide a low-power, high-efficiency microprocessor for future extension.

Comparison and Evaluation of Clothing Insulation of Newly-Developed Air-Filled Baffle Jackets and Down Padded Jackets (새롭게 개발된 겨울용 공기주입형 배플 패딩 재킷과 기존 방한 패딩 재킷들의 보온력 비교 평가)

  • Kwon, JuYoun;Kim, Siyeon;Baek, Yoon Jeong;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.261-272
    • /
    • 2021
  • The purpose of the present study was to evaluate the thermal insulation of air-filled winter jackets according to the amount of air-filler using a thermal manikin. The insulation of these jackets' was compared to a down padded jacket with an identical design and size. The amounts of air-filler were 100% (26,219 cm3), 70% (18,645 cm3), 50% (13,110 cm3), and 0% (0 cm3). The results showed that a clothing insulation (Icl) of 0%, 50%, 70%, and 100% air, and 100% down jackets was 0.208, 0.243, 0.207, 0.176, and 0.315 clo, respectively. In addition, the down jacket with waisttaped had a clothing insulation of 0.369 clo. However, the highest value of clothing insulation per clothing weight was the 50% air-filled jacket in all conditions. In terms of regional power consumption of the thermal manikin, the down jacket consumed less power for the shoulder and chest than the air-filled jackets. In conclusion, in order to maximize the thermal insulation of air-filled jackets, an optimal amount of air-filler, that is, an amount which does not compromise (break) the layer of inner air between the surface of manikin and the lining of the jacket, should be explored. Further studies on lining materials, end-closed design, and changes in thermal insulation under the conditions of strong wind or heavy snow are recommended.

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.