• Title/Summary/Keyword: Constructivist Teaching/Learning

Search Result 78, Processing Time 0.022 seconds

Reflections on the application of progressivism and constructivism in mathematics education (수학교육에서 진보주의와 구성주의 적용에 대한 성찰)

  • Park, Jeongseon;Shin, Jaehong
    • The Mathematical Education
    • /
    • v.60 no.3
    • /
    • pp.387-407
    • /
    • 2021
  • The present study was conducted on the assumptions that both progressivist and constructivist education emphasized the subjective knowledge of learners and confronted similar problems when the derived educational principles from the two perspectives were adopted and applied to mathematics research and practice. We argue that progressivism and constructivism should have clarified the meaning, purpose, and direction of 'emphasizing subjective knowledge' in application to the particular educational field. For the issue, we reflected Dewey's theory on the application of past progressivism, and aligned with it, we took a critical view of the educational applications of current constructivism. As a result, first, the meaning of emphasizing subjective knowledge is that each of the students constructs a unique mathematical reality based on his or her experience of situations and cognitive structures, and emphasizes our understanding of this subjective knowledge as researchers/observers. Second, the purpose of emphasizing subjective knowledge is not to emphasize subjective knowledge itself. Rather, it concerns the meaningful learning of objective knowledge: internalization of objective knowledge and objectification of subjective knowledge. Third, the application of the emphasis on subjective knowledge does not specify certain teaching/learning methods as appropriate, but orients us toward a genuine learner-centered reform from below. The introspections, we wish, will provide new momentum for discussion to establish constructivism as a coherent theory in mathematics classrooms.

A Case Study of Preservice Secondary Science Teachers' Demonstration of STEAM Lessons (중등 예비과학교사의 STEAM 수업 시연에 대한 사례 연구)

  • Choi, Sookyeong;Lee, Jaewon;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.4
    • /
    • pp.665-676
    • /
    • 2015
  • In this case study, we analyzed the processes of STEAM lessons conducted by preservice secondary science teachers. Three preservice science teachers at a college of education in Seoul participated in this study. After the workshop for STEAM education, they planned and practiced STEAM lessons. All of the teaching-learning materials were collected before lessons, and their lessons were observed and videotaped. Semi-structured interviews were also conducted before and after their lessons. The processes of STEAM lessons were analyzed while focusing on PCK and PDC. Their difficulties, needs, and views on STEAM education were also studied. It was found that they have taken much efforts to reflect the objectives and characteristics of STEAM education, and prepared teaching-learning materials by searching on the internet and arranging creative contents. Their great difficulty was to determine topics for STEAM lessons. While one preservice teacher satisfied with her lesson perceived STEAM education positively, the others perceived that it would be very difficult to practice STEAM lessons in school. For their STEAM lessons to be successful, the workshop needs to include some specific information on grades, proper topics for each grade, ways of making materials, and tips for effective STEAM lessons. In addition, it will be effective if the workshop is carried out after their study on constructivist learning theory and if they experience successful STEAM lessons.

The Type of Fractional Quotient and Consequential Development of Children's Quotient Subconcept of Rational Numbers (분수 몫의 형태에 따른 아동들의 분수꼴 몫 개념의 발달)

  • Kim, Ah-Young
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.1
    • /
    • pp.53-68
    • /
    • 2012
  • This paper investigated the conceptual schemes four children constructed as they related division number sentences to various types of fraction: Proper fractions, improper fractions, and mixed numbers in both contextual and abstract symbolic forms. Methods followed those of the constructivist teaching experiment. Four fifth-grade students from an inner city school in the southwest United States were interviewed eight times: Pre-test clinical interview, six teaching / semi-structured interviews, and a final post-test clinical interview. Results showed that for equal sharing situations, children conceptualized division in two ways: For mixed numbers, division generated a whole number portion of quotient and a fractional portion of quotient. This provided the conceptual basis to see improper fractions as quotients. For proper fractions, they tended to see the quotient as an instance of the multiplicative structure: $a{\times}b=c$ ; $a{\div}c=\frac{1}{b}$ ; $b{\div}c=\frac{1}{a}$. Results suggest that first, facility in recall of multiplication and division fact families and understanding the multiplicative structure must be emphasized before learning fraction division. Second, to facilitate understanding of the multiplicative structure children must be fluent in representing division in the form of number sentences for equal sharing word problems. If not, their reliance on long division hampers their use of syntax and their understanding of divisor and dividend and their relation to the concepts of numerator and denominator.

  • PDF

An Use of Dilemma Episodes in Science Teacher Education (딜레마 일화를 활용한 과학 교사 교육)

  • Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.2
    • /
    • pp.98-110
    • /
    • 2005
  • This study aims to explore the usefulness and the way of practical use of dilemma episodes in science teacher education by the responses of teachers on the given dilemma episodes and connected discussions. The research based on the idea of constructivist teacher education, the assumption that dilemmas can provide teachers with an open investigation context, an understanding of nature of science education. The dilemmas episodes in Wallace and Louden(2002) were introduced and discussed in order during graduate course to 11 elementary teachers. Perception on the reality and importance of given dilemmas differed by topics, but many of them were very similar to their experiences, brought active discussion on the issues. Some could not arouse sympathy because of cultural differences. The teachers recognized the dilemma episodes provided thoughtful reflection on their own teaching, opportunity of sharing experience and knowledge with peers, overall view for science education. Most of them gave positive opinion on the use of dilemma episodes in teacher education. Upon these teachers' responses and exploratory research experiences, some practical suggestion were made for science teacher educators.

Relationship between Preservice Science Teachers' Relativist Epistemology and their Pedagogical Beliefs (예비 과학교사들의 상대주의 인식론과 과학 교수·학습관 사이의 관련성)

  • Kwak, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.23 no.3
    • /
    • pp.221-233
    • /
    • 2002
  • This study investigated preservice science teachers' understandings of philosophical foundations(i.e., ontological and epistemological beliefs) underlying constructivist notions of learning. The teacher education program these subjects participated in explicitly addressed philosophical notions consistent with different views of constructivism. For these preservice science teachers, the program provided them with the opportunity to reflect upon the implications that their ontological and epistemological commitments had for their role as a science teacher. Data from four in-depth interviews were used to explore changes in each preservice science teacher's ontological beliefs, epistemological commitments, and pedagogical preferences. Results indicated that ontological beliefs and epistemological commitments were not necessarily consistent with conceptions of science teaching and learning for these preservice teachers. While some students internalized idealist and relativist perspectives, they did not integrate these relativist epistemological views into their preferred instructional practices. Also, regarding the fallible and tentative nature of knowledge, data in this study indicated that participants' epistemological beliefs about scientific Knowledge did influence how they were thinking about their roles as science teachers. Implications for teacher education programs and research on preservice science teacher's philosophical beliefs are discussed.

Implications for the Direction of Christian Education in the Age of Artificial Intelligence (인공지능 시대의 기독교교육 방향성에 대한 고찰)

  • Sunwoo Nam
    • Journal of Christian Education in Korea
    • /
    • v.74
    • /
    • pp.107-134
    • /
    • 2023
  • The purpose of this study is to provide a foundation for establishing the correct direction of education that utilizes artificial intelligence, a key technology of the Fourth Industrial Revolution, in the context of Christian education. To achieve this, theoretical and literature research was conducted. First, the research analyzed the historical development of artificial intelligence to understand its characteristics. Second, the research analyzed the use of artificial intelligence in convergence education from an educational perspective and examined the current policy direction in South Korea. Through this analysis, the research examined the direction of Christian education in the era of artificial intelligence. In particular, the research critically examined the perspectives of continuity and change in the context of Christian education in the era of artificial intelligence. The research reflected upon the fundamental educational purposes of Christian education that should remain unchanged despite the changing times. Furthermore, the research deliberated on the educational curriculum and teaching methods that should adapt to the changing dynamics of the era. In conclusion, this research emphasizes that even in the era of artificial intelligence, the fundamental objectives of Christian education should not be compromised. The utilization of artificial intelligence in education should serve as a tool that fulfills the mission permitted by God. Therefore, Christian education should remain centered around God, rooted in the principles of the Bible. Moreover, Christian education should aim to foster creative and convergent Christian nurturing. To achieve this, it is crucial to provide learners with an educational environment that actively utilizes AI-based hybrid learning environments and metaverse educational platforms, combining online and offline learning spaces. Moreover, to enhance learners' engagement and effectiveness in education, it is essential to actively utilize AI-based edutech that reflects the aforementioned educational environments. Lastly, in order to cultivate Christian learners with dynamic knowledge, it is crucial to employ a variety of teaching and learning methods grounded in constructivist theories, which emphasize active learner participation, collaboration, inquiry, and reflection. These approaches seek to align knowledge with life experiences, promoting a holistic convergence of faith and learning.

Exploring the Ways to Use Maker Education in School (학교 교육 활용을 위한 메이커 교육 구성 요소 탐색)

  • Kwon, Yoojin;Lee, Youngtae;Lim, Yunjin;Park, Youngsu;Lee, Eunkyung;Park, Seongseog
    • Journal of Korean Home Economics Education Association
    • /
    • v.32 no.4
    • /
    • pp.19-30
    • /
    • 2020
  • Maker education started on the basis of the maker movement in which makers gathered in makerspace share their activities and experiences, and the educational value pursued in maker education is based on the constructivist paradigm. The purpose of this study is to present maker education components to be used in school education, focus on the characteristics and educational values of maker education, and explore ways to use them. To this end, this study explored the theoretical grounds to re-conceptualize maker education, drew statements based on in-depth interview data of teachers conducting maker education classes, and reviewed its validity through experts. Based on these statements, by deriving the components for the use of maker education, the direction of maker education in school education was set, and an example framework that could be used in subject class and creative experiential learning was proposed. Research shows that in maker education, makers cooperate to carry out activities, share ideas with others and try to improve them, and include self-direction such as learning, tinkering, design thinking, sharing and reflection. can see. In addition, maker education emphasizes experiential learning that can solve real problems that students face, rather than confining specific activities to student choices as needed. It emphasizes the learner's course of action rather than the outcome of the activity, tolerates the learner's failure, and emphasizes the role of the teacher as a facilitator to promote re-challenge. In the future, it can be used in various ways in each subject (curriculum expert, teaching/learning expert, elementary and middle school teachers, parents, local educators, etc.) and school activities, and it will contribute to setting future research directions as a basic research for school maker education.

The Characteristics of Perceptual Change of High School of the Arts Students through Explicit Instructions on the Nature of Science (예술 고등학생들의 명시적 과학의 본성 수업을 통한 개념 변화의 특성)

  • Kim, Hee-Jung;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.266-283
    • /
    • 2013
  • The goal of this study is to explore the characteristics of perceptual change among students majoring in arts on the nature of science and apply the results to science education. According to the study, it is important to consider the results of interaction between learners' aptitude and teaching method. Teaching the nature of science to first grade students explicitly, experimental inquiry strategy was applied to fine arts students, and teaching strategy of scientific history to music students. To find out which elements of the nature of science have come into view on modern philosophy of science, pre and post tests on the nature of science (VNOS-C) were conducted on the students. To find out specifically why views on the nature of science have changed, a case study was conducted focusing on students who showed changes in their views on the elements of the nature of science. In conclusion, this study suggests that by using experimental inquiry strategy and strategy of scientific history properly, it is possible to change students' viewpoints on the elements of the nature of science and on modern philosophy of science. Through explicit instruction, we were able to find some positive conceptual changes on the nature of science and the modern philosophy of science in terms of both quantity and quality. This shows that the students studying arts are experiencing a constructivist conceptual change on the nature of science, and that conceptual ecology and learning strategy are involved in this process. Therefore, it is thought that this study offers an important implication in organizing science education on the nature of science.