• Title/Summary/Keyword: Constructive simulation

Search Result 64, Processing Time 0.02 seconds

Fuzzy neural network controller of interconnected method for civil structures

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.385-394
    • /
    • 2022
  • Recently, an increasing number of cutting-edged studies have shown that designing a smart active control for real-time implementation requires piles of hard-work criteria in the design process, including performance controllers to reduce the tracking errors and tolerance to external interference and measure system disturbed perturbations. This article proposes an effective artificial-intelligence method using these rigorous criteria, which can be translated into general control plants for the management of civil engineering installations. To facilitate the calculation, an efficient solution process based on linear matrix (LMI) inequality has been introduced to verify the relevance of the proposed method, and extensive simulators have been carried out for the numerical constructive model in the seismic stimulation of the active rigidity. Additionally, a fuzzy model of the neural network based system (NN) is developed using an interconnected method for LDI (linear differential) representation determined for arbitrary dynamics. This expression is constructed with a nonlinear sector which converts the nonlinear model into a multiple linear deformation of the linear model and a new state sufficient to guarantee the asymptomatic stability of the Lyapunov function of the linear matrix inequality. In the control design, we incorporated H Infinity optimized development algorithm and performance analysis stability. Finally, there is a numerical practical example with simulations to show the results. The implication results in the RMS response with as well as without tuned mass damper (TMD) of the benchmark building under the external excitation, the El-Centro Earthquake, in which it also showed the simulation using evolved bat algorithmic LMI fuzzy controllers in term of RMS in acceleration and displacement of the building.

Development and verification of a novel system for computed tomography scanner model construction in Monte Carlo simulations

  • Ying Liu;Ting Meng ;Haowei Zhang ;Qi Su;Hao Yan ;Heqing Lu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4244-4252
    • /
    • 2022
  • The accuracy of Monte Carlo (MC) simulations in estimating the computed tomography radiation dose is highly dependent on the accuracy of CT scanner model. A system was developed to observe the 3D model intuitively and to calculate the X-ray energy spectrum and the bowtie (BT) filter model more accurately in Monte Carlo N-particle (MCNP). Labview's built-in Open Graphics Library (OpenGL) was used to display basic surfaces, and constructive solid geometry (CSG) method was used to realize Boolean operations. The energy spectrum was calculated by simulating the process of electronic shooting and the BT filter model was accurately modeled based on the calculated shape curve. Physical data from a study was used as an example to illustrate the accuracy of the constructed model. RMSE between the simulation and the measurement results were 0.97% and 0.74% for two filters of different shapes. It can be seen from the comparison results that to obtain an accurate CT scanner model, physical measurements should be taken as the standard. The energy spectrum library should be established based on Monte Carlo simulations with modifiable input files. It is necessary to use the three-segment splicing modeling method to construct the bowtie filter model.

Modeling of Earthquake Ground Motion in a Small-Scale Basin (소규모 분지에서의 지진 지반운동 모델링)

  • Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.

A Comparison of the Effects of Optimization Learning Rates using a Modified Learning Process for Generalized Neural Network (일반화 신경망의 개선된 학습 과정을 위한 최적화 신경망 학습률들의 효율성 비교)

  • Yoon, Yeochang;Lee, Sungduck
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.847-856
    • /
    • 2013
  • We propose a modified learning process for generalized neural network using a learning algorithm by Liu et al. (2001). We consider the effect of initial weights, training results and learning errors using a modified learning process. We employ an incremental training procedure where training patterns are learned systematically. Our algorithm starts with a single training pattern and a single hidden layer neuron. During the course of neural network training, we try to escape from the local minimum by using a weight scaling technique. We allow the network to grow by adding a hidden layer neuron only after several consecutive failed attempts to escape from a local minimum. Our optimization procedure tends to make the network reach the error tolerance with no or little training after the addition of a hidden layer neuron. Simulation results with suitable initial weights indicate that the present constructive algorithm can obtain neural networks very close to minimal structures and that convergence to a solution in neural network training can be guaranteed. We tested these algorithms extensively with small training sets.