• 제목/요약/키워드: Construction robot

검색결과 309건 처리시간 0.027초

외벽청소로봇의 가이드레일 시공기준체계 구축에 관한 연구 (Development of the construction specification framework for skyscraper outer wall cleaning robot)

  • 박수열;김균태;한재구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.292-294
    • /
    • 2013
  • When the number of skyscrapers are increased in the domestic, it has increased the need of the outer wall cleaning robot. However, it does not exist the construction specification of the outer wall cleaning robot in the domestic. it is difficult to apply in the domestic that the outer wall cleaning robot. For this reason, it raised the need of the construction specification. And it is urgent that the construction specification of the outer wall cleaning robot is needed to develop in the domestic. Therefore, this study aims to propose the construction specification framework of the outer wall cleaning robot. In the future, this study will be based on the development of the construction specification on the outer wall cleaning robot.

  • PDF

A NOVEL APPROACH OF BUILDING CONSTRUCTION USING ROBOTIC TECHNOLOGY

  • Baeksuk Chu;Kyungmo Jung;Hunhee Cho;Myo-Taeg Lim;Daehie Hong
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.31-37
    • /
    • 2011
  • Construction automation is yet to be improved since construction site still faces a lot of high risks and difficulties. This research focuses on applying robotic beam assembly system in place of construction workers. This system consists of CF (Construction Factory) structure to provide adequate working environment to robot automation. The CF structure not only gives automation environment for a robot but also houses the equipments to protect from outside effects. The robotic beam assembly system also consists of robotic bolting system and robot transport mechanism. It utilizes various tools to insert and join the bolts and nuts. Visual servoing helps precise robot motion by sensing bolt hole and tail of the bolt. ITA system helps non skilled workers to easily perform the assembly work with the robot system. The robot transport mechanism includes sliding rail and cross-wired lift. It carries the robot to a desired position for assembly work.

  • PDF

시공자동화를 위한 크라이밍 유압로봇의 안정성에 관한 연구 (A Study on Safety Validation of Climbing Hydraulic Robot System for Automation in Construction)

  • 이명도;최희복;이규원;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.15-19
    • /
    • 2009
  • As robotic technologies have become more actively utilized to automate many construction tasks, they have been able to improve the construction productivity, quality, and workers safety on site. A new system, of which Robot-based Construction Automation (RCA), is currently being developed, and RCA systems consist of Construction Factory(CF), Automated Bolting Robots, and Climbing Hydraulic Robot. Especially. Climbing Hydraulic robot system is very important to RCA systems because of function as lifting the Construction Factory. In this paper, We validate safety of Climbing Hydraulic Robot system before application for real building construction.

  • PDF

THE DEVELOPMENT OF A CURTAIN WALL INSTALLATION ROBOT THROUGH THE ANALYSIS OF EXISTING CONSTRUCTION PROCESSES

  • Seung-Nam Yu ;Chong-Ho Choi ;Seung-Yel Lee;Chang-Soo Han
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.520-526
    • /
    • 2005
  • Automation in construction has been restricted to special classes of tasks. Curtain walls can be handled like standard construction materials; they are heavy but breakable, and are large but require precise installation. These characteristics make the installation of curtain walls ideal for robotic automation. There are two methods for developing construction robots: The first is approving the robot performance and applying it to the current construction methods. The second is admitting the limitation of the current robot technology and trying to optimize the current method of construction to apply the robot system. In this study, we derived the performance requirements of a curtain wall-installation robot. We also tested this robot at a real construction site and evaluated its performance. Finally, the results were analyzed, and we proposed additional research.

  • PDF

건설로봇용 인간-로봇 협업 제어 (Human-Robot Cooperative Control for Construction Robot)

  • 이승열;이계영;이상헌;한창수
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.285-294
    • /
    • 2007
  • Previously, ASCI(Automation System for Curtain-wall Installation) which combined with a multi-DOF manipulator to a mini-excavator was developed and applied on construction site. As result, the operation by one operator and more intuitive operation method are proposed to improve ASCI's operation method which need one person with a remote joystick and another operating an excavator. The human-robot cooperative system can cope with various and untypical constructing environment through the real-time interacting with a human, robot and constructing environment simultaneously. The physical power of a robot system helps a human to handle heavy construction materials with relatively scaled-down load. Also, a human can feel and response the force reflected from robot end effecter acting with working environment. This paper presents the feasibility study regarding the application of the proposed human-robot cooperation control for construction robot through experiments on a 2DOF manipulator.

상수도 배관의 갱생 공정을 위한 배관 건설 로봇 개발 (Development of the Pipe Construction Robot for Rehabilitation Work Process of the Water Pipe Lines)

  • 정명수;이재열;홍성호;장민우;신동호;함제훈;서갑호;서진호
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.223-231
    • /
    • 2021
  • In this paper describes the research and development of a pipe robot for pipe rehabilitation construction of old water pipes. After the water supply pipe construction, the pipe is leaking, damaged, and aging due to corrosion. Eventually, resistance to the flow of water in lower supply efficiency and contaminated water such as rusty water, finally in various consumer complaints. In order to solve this problem, rehabilitation construction robot technology is required to secure the construction quality of pipe rehabilitation construction and restore the function of the initial construction period. The developed pipe rehabilitation construction robot required a hydraulic actuator for high traction and was equipped with a small hydraulic supply device. In addition, we have developed a hydraulic cylinder and a link system that supports the pipe inner diameter to develop a single pipe robot corresponding to 500 to 800mm pipe diameter. The analysis and experimental verification of the driving performance and unit function of the developed pipe reconstruction robot are explained, and the result of the integrated performance test of the pipe reconstruction robot at the water supply pipe network site is explained.

건설로봇도입에 대한 국내건설업자들의 인식에 관한 연구 (A Study on the thoughts of officers who work for the domestic construction company about introducing the Constuction Robot into the domestic construction industry)

  • 주한종;고현;김경환;김재준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 춘계학술논문 발표대회
    • /
    • pp.105-108
    • /
    • 2007
  • Construction Automation must be founded on the Construction Robot Technology. And Construction Automation is definitely different from Construction Mechanization. This study includes the survey of the thoughts of domestic construction company officer about introducing Construction Robot into domestic construction industry, and the thoughts of recognition related to the Construction Automation currently international trend in construction industry.

  • PDF

2-트로웰 방식 소형 미장로봇의 주행 알고리즘 개발 (Development of moving algorithm about concrete floor finishing robot with two trowels)

  • 우광식;이호길;강민성;송재복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.614-617
    • /
    • 2004
  • The construction industry is typical of the ' job of 3D ', the automated construction equipments are getting used in the domestic construction sites and the construction robots began to be sold in the abroad. The research developed the small sized robot which could be used at the apartments and the office buildings with the small floors. But the past finishing robot could not be operated easily, it had expensive controller which could not increase the production of robot. In this paper, user interface is made to operate easily the small concrete floor finishing robot with two trowel which has low cost controller, motion algorithm including modeling and mechanism about the concrete finishing robot is developed to control moving. Simulation and experiment figure out how the finishing robot moves and will contribute to realizing it.lizing it.

  • PDF

수중건설로봇의 유압 제어 안정성 향상을 위한 이중화 설계 (Redundant Architectural Design of Hydraulic Control System for Reliability Improvement of Underwater Construction Robot)

  • 이정우;박정우;서진호;최영호
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.380-385
    • /
    • 2015
  • In the development of an underwater construction robot, the reliability of the operating system is the most important issue because of its huge maintenance cost, especially in a deep sea application. In this paper, we propose a new redundant architectural design for the hydraulic control system of an underwater construction robot. The proposed architecture consists of dual independent modular redundancy management systems linked with a commercial profibus network. A cold standby redundancy management system consisting of a preprocessing switch circuit is applied to the signal network, and a hot standby redundancy management system is adapted to utilize two main controllers.

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • 제6권2호
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.