• 제목/요약/키워드: Construction monitoring

검색결과 1,738건 처리시간 0.031초

아파트 건설 현장 작업자 특징 추출 및 다중 객체 추적 방법 제안 (A Suggestion for Worker Feature Extraction and Multiple-Object Tracking Method in Apartment Construction Sites)

  • 강경수;조영운;류한국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.40-41
    • /
    • 2021
  • The construction industry has the highest occupational accidents/injuries among all industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. Therefore, this study proposed to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple-object tracking with instance segmentation. To evaluate the system's performance, we utilized the MS COCO and MOT challenge metrics. These results present that it is optimal for efficiently automating monitoring surveillance system task at construction sites.

  • PDF

Construction Site Scene Understanding: A 2D Image Segmentation and Classification

  • Kim, Hongjo;Park, Sungjae;Ha, Sooji;Kim, Hyoungkwan
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.333-335
    • /
    • 2015
  • A computer vision-based scene recognition algorithm is proposed for monitoring construction sites. The system analyzes images acquired from a surveillance camera to separate regions and classify them as building, ground, and hole. Mean shift image segmentation algorithm is tested for separating meaningful regions of construction site images. The system would benefit current monitoring practices in that information extracted from images could embrace an environmental context.

  • PDF

The Cost Monitoring of Construction Projects through Earned Value Analysis

  • Waris, Muhammad;Khamidi, Mohd Faris;Idrus, Arazi
    • Journal of Construction Engineering and Project Management
    • /
    • 제2권4호
    • /
    • pp.42-45
    • /
    • 2012
  • In construction industry, the term 'procurement' is considered as a project based job where clients and contractors are always keen to observe performance indicators. These indicators represent financial and non-financial efficiency of project activities. Among these, the monitoring of financial indicators such as cost monitoring is an ongoing process and its importance cannot be undermined during the project life cycle. It can be monitored by using traditional approach of direct reporting of actual cost against budget. However, the comparison of budget versus actual spending does not indicate the worth of the work which is completed at any given time. This approach does not represent the true cost performance of the project. Because of these limitations, this paper discusses the applications of Earned Value Analysis (EVA) for cost monitoring of construction projects in Malaysia. Besides traditional approach, EVA is a three-dimensional approach that compares three cost indicators i.e. the budgeted value of work scheduled with the earned value of physical work completed and the actual cost of work completed. Therefore, cost monitoring by EVA is an objective measure of actual work performed. This paper uses a case study, an example application of EVA as a cost monitoring tool. This case study reaffirms the benefits of using EVA for project cash flow analysis and forecasting.

A Framework for Computer Vision-aided Construction Safety Monitoring Using Collaborative 4D BIM

  • Tran, Si Van-Tien;Bao, Quy Lan;Nguyen, Truong Linh;Park, Chansik
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1202-1208
    • /
    • 2022
  • Techniques based on computer vision are becoming increasingly important in construction safety monitoring. Using AI algorithms can automatically identify conceivable hazards and give feedback to stakeholders. However, the construction site remains various potential hazard situations during the project. Due to the site complexity, many visual devices simultaneously participate in the monitoring process. Therefore, it challenges developing and operating corresponding AI detection algorithms. Safety information resulting from computer vision needs to organize before delivering it to safety managers. This study proposes a framework for computer vision-aided construction safety monitoring using collaborative 4D BIM information to address this issue, called CSM4D. The suggested framework consists of two-module: (1) collaborative BIM information extraction module (CBIE) extracts the spatial-temporal information and potential hazard scenario of a specific activity; through that, Computer Vision-aid Safety Monitoring Module (CVSM) can apply accurate algorithms at the right workplace during the project. The proposed framework is expected to aid safety monitoring using computer vision and 4D BIM.

  • PDF

Online Monitoring of Ship Block Construction Equipment Based on the Internet of Things and Public Cloud: Take the Intelligent Tire Frame as an Example

  • Cai, Qiuyan;Jing, Xuwen;Chen, Yu;Liu, Jinfeng;Kang, Chao;Li, Bingqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.3970-3990
    • /
    • 2021
  • In view of the problems of insufficient data collection and processing capability of multi-source heterogeneous equipment, and low visibility of equipment status at the ship block construction site. A data collection method for ship block construction equipment based on wireless sensor network (WSN) technology and a data processing method based on edge computing were proposed. Based on the Browser/Server (B/S) architecture and the OneNET platform, an online monitoring system for ship block construction equipment was designed and developed, which realized the visual online monitoring and management of the ship block construction equipment status. Not only that, the feasibility and reliability of the monitoring system were verified by using the intelligent tire frame system as the application object. The research of this project can lay the foundation for the ship block construction equipment management and the ship block intelligent construction, and ultimately improve the quality and efficiency of ship block construction.

Labor Vulnerability Assessment through Electroencephalogram Monitoring: a Bispectrum Time-frequency Analysis Approach

  • CHEN, Jiayu;Lin, Zhenghang
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.179-182
    • /
    • 2015
  • Detecting and assessing human-related risks is critical to improve the on-site safety condition and reduce the loss in lives, time and budget for construction industry. Recent research in neural science and psychology suggest inattentional blindness that caused by overload in working memory is the major cause of unexpected human related accidents. Due to the limitation of human mental workload, laborers are vulnerable to unexpected hazards while focusing on complicated and dangerous construction tasks. Therefore, detecting the risk perception abilities of workers could help to identify vulnerable individuals and reduce unexpected injuries. However, there are no available measurement approaches or devices capable of monitoring construction workers' mental conditions. The research proposed in this paper aims to develop such a measurement framework to evaluate hazards through monitoring electroencephalogram of labors. The research team developed a wearable safety monitoring helmet, which can collect the brain waves of users for analysis. A bispectrum approach has been developed in this paper to enrich the data source and improve accuracy.

  • PDF

이방성/비균질 암반의 터널 계측 사례 분석 (Cases of Tunnel Monitoring of Anisotropic/Heterogeneous Rock Masses)

  • 김창용;홍성완;김광염;백승한
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1299-1306
    • /
    • 2005
  • The introduction of geodetic methods of absolute displacement monitoring in tunnels has improved the value of the measurements significantly. By using this method, structurally controlled behavior and influences of an anisotropic rock mass can be determined and the excavation and support adjusted accordingly. In this study cases of tunnel monitoring in anisotropic/heterogeneous rock masses are analyzed, and various anisotrpic behavior of tunnel can be estimated. Because rock anisotropy and heterogeneity can have great influence on tunnel behavior, tunnel design considering rock anisotropy and heterogeneity is needed. Also under construction, feedback must be performed by using face mapping and monitoring to prevent over-deformation and tunnel collapse.

  • PDF

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Developing a Safety Scaffold Monitoring System Using Wireless Sensor Network Technology

  • Tserng, H. Ping;Huang, Hung-Jui;Li, Xin-Yan;Huang, Han-Tang
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.324-327
    • /
    • 2015
  • Scaffold is the most commonly used equipment in various types of construction works. Since various types of construction works use the same scaffold equipment, it becomes more difficult to be controlled and managed, thus resulting hazard frequently. According to the information announced in July 2012 by Council of Labor Affairs Executive Yan, the site collapse or incomplete anti-falling protection has led the site to accident frequently, and this is the main reason that causes construction industry occupational disasters. The labor death occupational hazard ratio rises up to 13% in scaffold activity, and the Council of Labor Affairs Executive Yan has showed that the death ratio is higher when using the scaffold in construction site, the total number of death has reached to 139 from 2005 to 2010. In order to ensure the safety of scaffold user, this study tends to build a wireless sensor monitoring system to detect the reliability and safety of the scaffold. The wireless sensor technique applies in this study is different with the traditional monitoring technique which is limited with wired monitoring. Wireless sensor technique does not need wire, it just needs to consider the power supply for establishing the network and receiving stable information, and it can become a monitoring system. In addition, this study also integrates strain gauge technique in this scaffold monitoring system, to develop a real-time monitoring data transfer mechanism and replace the traditional wired single project monitoring equipment. This study hopes to build a scaffold collapse monitoring system to effectively monitor the safety of the scaffold as well as provide the timesaving installation, low-cost and portable features.

  • PDF

Virtual Design and Construction (VDC)-Aided System for Logistics Monitoring: Supply Chains in Liquefied Natural Gas (LNG) Plant Construction

  • Moon, Sungkon;Chi, Hung-Lin;Forlani, John;Wang, Xiangyu
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.195-199
    • /
    • 2015
  • Many conventional management methods have emphasized the minimization of required resources along the supply chain. Accordingly, this paper presents a proposed method called the Virtual Design and Construction (VDC)-aided system. It is based on object-oriented resource control, in order to accomplish a feed-forward control monitoring supply chain logistics. The system is supported by two main parts: (1) IT-based Technologies; and (2) VDC Models. They enable the system to convey proactive information from the detection technology to its linked visualization. The paper includes a field study as the system's pre-test: the Scaffolding Works in a LNG Mega Project. The study demonstrates a system of real-time productivity monitoring by use of the RFIDbased Mobile Information Hub. The on-line 'productivity dashboard' provides an opportunity to display the continuing processes for each work-package. This research project offers the observed opportunities created by the developed system. Future work will entail research experiments aimed towards system validation.

  • PDF