• Title/Summary/Keyword: Construction material

Search Result 4,989, Processing Time 0.031 seconds

Development of Image-Based Artificial Intelligence Model to Automate Material Management at Construction Site (공사현장 자재관리 자동화를 위한 영상기반 인공지능 모델개발)

  • Shin, Yoon-soo;Kim, Junhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.221-222
    • /
    • 2021
  • Conventionally, in material management at a construction site, the type, size, and quantity of materials are identified by the eyes of the worker. Labor-intensive material management by manpower is slow, requires a lot of manpower, is prone to errors, and has limitations in that computerization of information on the identified types and quantities is additionally required. Therefore, a method that can quickly and accurately determine the type, size, and quantity of materials with a minimum number of workers is required to reduce labor costs at the construction site and improve work efficiency. In this study, we developed an automated convolution neural network(CNN) and computer vision technology-based rebar size and quantity estimation system that can quickly and accurately determine the type, size, and quantity of materials through images.

  • PDF

MATERIAL MATCHING PROCESS FOR ENERGY PERFORMANCE ANALYSIS

  • Jung-Ho Yu;Ka-Ram Kim;Me-Yeon Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.213-220
    • /
    • 2011
  • In the current construction industry where various stakeholders take part, BIM Data exchange using standard format can provide a more efficient working environment for related staffs during the life-cycle of the building. Currently, the formats used to exchange the data from 3D-CAD application to structure energy analysis at the design stages are IFC, the international standard format provided by IAI, and gbXML, developed by Autodesk. However, because of insufficient data compatibility, the BIM data produced in the 3D-CAD application cannot be directly used in the energy analysis, thus there needs to be additional data entry. The reasons for this are as follows: First, an IFC file cannot contain all the data required for energy simulation. Second, architects sometimes write material names on the drawings that are not matching to those in the standard material library used in energy analysis tools. DOE-2.2 and Energy Plus are the most popular energy analysis engines. And both engines have their own material libraries. However, our investigation revealed that the two libraries are not compatible. First, the types and unit of properties were different. Second, material names used in the library and the codes of the materials were different. Furthermore, there is no material library in Korean language. Thus, by comparing the basic library of DOE-2, the most commonly used energy analysis engine worldwide, and EnergyPlus regarding construction materials; this study will analyze the material data required for energy analysis and propose a way to effectively enter these using semantic web's ontology. This study is meaningful as it enhances the objective credibility of the analysis result when analyzing the energy, and as a conceptual study on the usage of ontology in the construction industry.

  • PDF

An Analysis on Architectural Characteristics of Domestic Modular Housing and Building Material Standardization Effect through MC Design (국내 모듈러 주택의 특성 및 MC 설계를 통한 건축자재 표준화 효과 분석)

  • Lee, Chang-Jae;Lim, Seok-Ho
    • Journal of the Korean housing association
    • /
    • v.26 no.6
    • /
    • pp.103-113
    • /
    • 2015
  • Modular construction is a process in which a building is produced off-site in module boxes using standard materials. Since the introduction of prefabrication in building construction, Modular Coordination (MC) has become an essential design tool in building design and construction. However, in Korea, the design standardization has not been adequately applied to modular construction. This study intends to analyze the current status of modular construction in Korea and explore the applicability of MC design in the construction industry. The analysis of the current status of MC design within Korean four major modular construction companies indicates that an incremental dimension is not properly used in horizontal planning modules, which results in a problem of increasing construction cost by high material loss rate. But, in vertical planning modules, a incremental dimension of 100 mm (1 M) is found to be used although the structural system varies among manufacturers, which demonstrates the potential for an open system to be well applied in modular construction, despite different structural systems.

Measurement of Construction Material Quantity through Analyzing Images Acquired by Drone And Data Augmentation (드론 영상 분석과 자료 증가 방법을 통한 건설 자재 수량 측정)

  • Moon, Ji-Hwan;Song, Nu-Lee;Choi, Jae-Gab;Park, Jin-Ho;Kim, Gye-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • This paper proposes a technique for counting construction materials by analyzing an image acquired by a Drone. The proposed technique use drone log which includes drone and camera information, RCNN for predicting construction material type, dummy area and Photogrammetry for counting the number of construction material. The existing research has large error ranges for predicting construction material detection and material dummy area, because of a lack of training data. To reduce the error ranges and improve prediction stability, this paper increases the training data with a method of data augmentation, but only uses rotated training data for data augmentation to prevent overfitting of the training model. For the quantity calculation, we use a drone log containing drones and camera information such as Yaw and FOV, RCNN model to find the pile of building materials in the image and to predict the type. And we synthesize all the information and apply it to the formula suggested in the paper to calculate the actual quantity of material pile. The superiority of the proposed method is demonstrated through experiments.

Design Program and Economic Evaluation for Hollow RC Bridge Columns with Reinforcement Details for Material Quantity Reduction (물량저감 중공 철근콘크리트 교각의 설계프로그램과 경제성 평가)

  • Kim, Tae-Hoon;Son, Yun-Ki;Yang, Nam-Seok;Lee, Seung-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.403-412
    • /
    • 2014
  • This paper presents special-purpose design program and plastic design results for hollow RC bridge columns with reinforcement details for material quantity reduction. The developed reinforcement details has economic feasibility and rationality and makes construction periods shorter. This study documents the economic evaluation of hollow reinforced concrete bridge column systems with reinforcement details for material quantity reduction and presents conclusions based on the application findings. As a result, the proposed reinforcement details for material quantity reduction were designed prior to the existing reinforcement details in terms of structural rationality, constructability, and economic.

An Experimental Study of Fatigue and Static Behavior for Composite Deck Member (복합재료 바닥판 부재의 정적 및 피로거동에 관한 실험적 연구)

  • Kim, Young-Chan;Park, Tai-Young;Kim, Doo-Hwan
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.479-482
    • /
    • 2007
  • For making an application in construction parts of the composite material's complicated theory needs to accumulation of data by the help of study and experiment(demonstrate). Thus, this study is conducted research and analysis about the Influence of repeated loading cycles on Strength Ratio of the high quality material which is Carbon/Epoxy Composite Laminates through the test of tensile and fatigue Characteristics, based on it, construction engineers will can apply composite materials to construction technical without difficulty.

  • PDF

Characteristics of Friction Behavior of Ceramic Friction Materials according to Surface Materials

  • Ji-Hun Park;Jung-Woo Lee;Jong-Won Kwark;Woo-Jin Han;Oneil Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.535-541
    • /
    • 2023
  • Friction material, an integral constituent of bearing supports, facilitates frictional interactions between two components. Polytetrafluoroethylene (PTFE), a commonly employed friction material in bearing supports, has assessed resultant friction equilibrium. Nonetheless, protracted utilization diminishes frictional performance as the lubricating agent is progressively depleted. Friction materials can affect the entire structural system. Hence, this study applied ceramic material as a friction material due to its high strength, low friction, and low deformation. The frictional behavior was investigated using a cyclic friction test, considering various friction materials as the primary design variables and examining their covariance in cyclic frictional movements. The results substantiated that the ceramic friction material yielded a low variance and friction coefficients in cyclic frictional movements.

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.

The Development on Hybrid FRP Rod and Its Tensile Properties (Hybrid FRP Rod의 개발과 인장특성)

  • 곽계환;심종성;문도영;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.527-533
    • /
    • 2004
  • Utilization of new lighter materials, more tough and durable than existing materials, is getting larger in recent constructions. FRP, stronger and lighter than present materials, can be formed in various shapes and has high durability, which makes it more profitable as a new material in construction fields. However, effort to use FRP in real construction is toddling and FRP is used primarily as reinforcing material in connote structure. We are about to develop Hybrid FRP Rod for the development of advanced construction material which is based on IT, by Hybridization of HIP, spotlighted as new construction material, and optical sensor in smart measurement. Beforehand, it is required to fully understand the properties of tension test operated in Hybrid FRP Rod. For this, a specimen was made by hybridization of FRP Rod and FBG sensor. Strain of Hybrid FRP Rod was measured comparing electric sensor and FBG sensor.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of Waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang, Hyo-Jin;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs, to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF