• Title/Summary/Keyword: Construction disaster

Search Result 1,511, Processing Time 0.027 seconds

Investigation of characteristic values in TDR waveform using SHapley Additive exPlanations (SHAP) for dielectric constant estimation during curing time

  • Won-Taek Hong;WooJin Han;Yong-Hoon Byun;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • As materials cure, the internal electrical flow changes, leading to variations in the dielectric constant over time. This study aims to assess the impact of voltage values extracted from time domain reflectometry (TDR) waveforms, measured during the curing of materials, on predicting the dielectric constant. The experiments are conducted over a curing period ranging from 60 to 8640 minutes, with 30 TDR trials. From the measured waveforms, values of V0, V1, V2, Vf, and Δt are deduced. Additionally, curing time is included as an input variable. Groups A and B are distinguished based on the presence or absence of Δt, indicating a physical relationship between Δt and the dielectric constant. The dielectric constant is set as the output variable. The SHapley Additive exPlanations (SHAP) algorithm is applied to the compiled data. The results indicate that Δt and V1 are the most influential input variables in both Group-A and Group-B. The study also presents the distribution of SHAP values and interacts SHAP values to infer the interrelationships among the input variables. To validate the reliability of these findings, the partial dependence (PD) algorithm is applied to estimate the marginal effects of each input variable, with outcomes closely aligning with those of the SHAP algorithm. This research suggests that understanding the contributions and proportional relationships of each input variable can aid in interpreting the relationships among various material properties.

A Basic Study on the Performance Improvement of Safety Certification Standards (안전인증기준 성능화에 대한 기반 연구)

  • Byeon, Jung-Hwan;Kim, Jung-Gon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.487-499
    • /
    • 2021
  • Purpose:The purpose of the paper is to review the problems of performance enhancement of safety certification standards and to suggest directions for improvement in order to rationalize safety certification standards for future industrial development and environmental changes. Method: The problems and limitations of the safety certification system are summarized through literature review and interview with manager, and the status of safety certification standards is classified into design standards, performance standards, and detailed standards, and the status analysis is performed. In addition, by synthesizing the results of the investigation and analysis, improvements are suggested to improve the performance of the safety certification standards. Result: Through the survey, the problems and limitations of safety certification could be grouped into six categories: government-led certification system operation, standardized certification standards, long time required to improve certification, poor certification standards preparation system, and lack of reflection of industry opinions. And, as a result of analyzing the certification standards by dividing them into performance and design standards, in the case of machinery, equipment, and protection devices, the design standards were high at 69.7% and 64.9%, whereas in the case of protective equipment, the performance standards were high at 61.1%. In order to improve the performance of safety certification standards centered on design standards, it is necessary to determine the possibility of performance enhancement of the certification standards and determine the feasibility of the inspection test method. In order to improve performance, it was reviewed that it was necessary to establish a systemic foundation and infrastructure, such as strengthening the Product Liability Act, systematizing market monitoring, etc., distributing certification test tasks, and participating in the preparation of certification standards by the private sector. Conclusion: Through this study, the problems and limitations of Korea's safety certification system were summarized and the necessity for performance improvement was reviewed. Performance improvement of safety certification standards is a matter that requires preparatory work, such as legislative revision and infrastructure construction, and requires mid-to-long-term promotion. In addition, rather than improving the overall safety certification standards, the performance requirements for each item subject to certification should be reviewed and promoted, and details should be specified through additional research.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Performance Evaluation Method for Facility Inspection and Diagnostic Technologies (첨단기술을 활용한 시설물 점검 및 진단 기술 검·인증을 위한 성능평가 방법론)

  • Lee, Young-Ho;Bae, Sung-Jae;Jung, Wook;Cho, Jae-Yong;Hong, Sung-Ho;Nam, Woo-Suk;Kim, Young-Min;Kim, Jung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.178-191
    • /
    • 2020
  • Purpose: This paper proposes a performance evaluation method for state-of-the-art facility inspection/diagnostic equipment through a trend survey of equipment and standardization systems of US, Japan, and Korea. This paper also suggests the priority of developing a performance evaluation method through expert interviews and surveys. Method: In this study, report for the last 5 years of FMS, state-of-the-art equipment of facility maintenance companies/safety diagnosis specialist agencies and papers/research reports/patents of NTIS were analyzed to identify recent trends of facility inspection/diagnostic equipment usages. standardization system of US, Japan, and Korea were analyzed to figure out a suitable form of a performance evaluation method for the domestic situation. And expert interview and survey were conducted to identify the priority of developing a performance evaluation method. Result: The performance evaluation method must be developed by the shape that only evaluates performance, regardless of types of equipment, on inspection item level for creative technology development. The priority of developing the performance evaluation method was identified as crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete and steel for stability evaluation. Conclusion: The performance evaluation method will be developed firstly for the crack detection of concrete for durability evaluation and displacement/deformation/fatigue detection of concrete/steel for stability evaluation. In order to promote creative technology development, the performance evaluation method should be developed in a form that provides standardized specimens or testbeds and can be applied regardless of types of technologies.

A Study on the Decline of Provincial Government Office of Jeollabuk-do in Modern Era (근대기 전라북도 지방관아의 쇠퇴에 관한 연구)

  • Oh, Jun-young;Kim, Young-mo
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.1
    • /
    • pp.24-43
    • /
    • 2015
  • This study constitutes an inquiry into the decline of Government Office(官衙) facilities carried out intensively during modern era, focusing on provincial government offices of Jeollabuk-do. There have been several studies of changes in provincial government offices till now, but there have been few studies of government offices of the counties and prefectures(郡縣) during the period of the Japanese Resident-General of Korea and after the National Liberation, temporally and there have still been lacking studies on Jeollabuk-do, spatially. Thus, this study attempts to empirically prove the reasons and the time of the decline of provincial government offices in Jeollabuk-do and the characteristics in the process of decline focusing on modern era. As a result of the study, four factors: demolition, abolition, appropriation and disaster had the most decisive impacts on the decline of government office facilities. Demolition refers to the destruction of government office facilities, and abolition, to the decline and the discontinuation of the operation of the facilities. Appropriation refers to conversion to facilities to meet public functions, and disaster, damage from a typhoon or fire. These factors had already been started from the 1900s, and by the 1930s, most of the government office facilities came to lose their original looks and functions. In the meantime, there was an essential purpose in demolition, the most direct factor in the destruction of the government office facilities in terms of function: that is new construction of public facilities necessary for administration and rule. The existing government office facilities were appropriated, sometimes, but behind that, many cases of demolition of the government office facilities for the new construction of public facilities are found. The appropriation of the government office facilities is divided into educational, administrative, financial and security facilities, and generally, Gaeksa(客舍) and Dongheon(東軒) were used respectively as educational and administrative facilities while their attached facilities were used as financial and public order and security facilities in general. Especially, some government office facilities were utilized as distinctive facilities such as housing or hospital. In the process of appropriation, a lot of modification occurred inside and outside the government office facilities, due to which, the government office facilities gradually declined losing their traditional styles.

Consistency Analysis of Intermediate Soil Based on the Fines Contents (세립분 함유율에 따른 중간토의 컨시스턴시 분석)

  • Oh, Sewook;Bae, Wooseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.6
    • /
    • pp.17-26
    • /
    • 2021
  • Ground investigation and result analysis generally used to examine all sorts of structures' subsidence or stability can be classified into sandy soil and cohesive soil, and analysis on the liquid limit of soil is utilized to evaluate the physical properties of ground and types or technical behavior of soil. The most widely used method to analyze liquid limit is Casagrande with which liquid limit can be calculated relatively easily; however, it is fairly difficult to apply it to soil equipped with intermediate properties. Therefore, concerning the properties of soil having the intermediate properties of sedimentary ground, this researcher mixed the clay from Yangsan, Gwangyang, and Busan with sandy soil to make intermediate soil and then carried out the test of consistency limit and also evaluated applicability by using the suggested formula of consistency revision. The sample of intermediate soil was the mixture of clay and sandy soil, and to produce intermediate soil, the content (Fc) of fine soil was applied as 50%, 75%, or 100%. Regarding the physical properties of intermediate soil, to maintain the properties of clay in the natural state, bentonite was added at a fixed rate for controlling the properties of clay, and then, consistency was analyzed. By adopting the formula of consistency revision suggested in advanced research, this author analyzed consistency based on the experiment and consistency based on the suggested formula of revision. Also, about intermediate soil collected at the site, consistency based on the experiment and consistency based on the suggested formula of revision were analyzed comparatively, and about intermediate soil collected, this researcher analyzed particle size and calculated the content (Fc) of fine soil to analyze intermediate soil in diverse conditions. Moreover, about intermediate soil collected at the site, the suggested formula of consistency revision was applied to calculate the compression index, and the compression index based on the experiment and the compression index based on the suggested formula were analyzed comparatively to evaluate the applicability of the suggested formula.

The Stability Analysis of Near Parallel Tunnels Pillar at Multi-layered Soil with Shallow Depth by Numerical Analysis (수치해석에 의한 저토피 다층지반에서 근접 병설터널 필라의 안정성 분석)

  • Lim, Hyungmin;Son, Kwangrok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In Korea, in general, separation distance between existing parallel tunnels was set at two to five times as distant as the diameter of the tunnels according to ground conditions. Recently, however, actual applicability of closely spaced parallel tunnels whose distance between tunnel centers was shorter than the diameter has increased due to environmental damages resulting from massive cutting, restriction in purchase of required land, and maintenance of linear continuity. In particular, when the pillar width of tunnel decreases, the safety of pillars affects behaviors of the tunnel and therefore the need for diverse relevant studies has emerged. However, research so far has been largely confined to analysis of behavior characteristics of pillars, or parameters affecting design, and actually applicable and quantitative data have not been presented. Accordingly, in order to present a stability evaluation method which may maximally reflect construction conditions of spots, this study reflected topographical and stratigraphic characteristics of the portal part with the highest closeness between the tunnels, simulated multi-layer conditions with rock mass and complete weathering, and assessed the degree of effect the stability of pillars had on the entire tunnels through numerical analysis according to changes in pillar width by ground strength. This study also presented composite analysis result on ground surface settlement rates, interference volume rates, and average strength to stress and a formula, which may be applicable to actual work, to evaluate safety rates of closely spaced parallel tunnel pillars and minimum pillar width by ground strength based on failure criteria by Hoek-Brown (1980).

An Experimental Study on Bearing Capacity of Drilled Shaft with Mid-size (중구경 현장타설말뚝의 지지력 특성에 관한 실험적 연구)

  • Lee, Kwang-Wu;You, Seung-Kyong;Park, Jeong-Jun;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.263-272
    • /
    • 2019
  • This paper describes the results of bearing capacity using field loading test of pile, in order to extend the applicability of drilled shaft with mid-size, and the results were compared with the prediction results of design bearing capacity by empirical formular. The static load test result showed that the allowable bearing capacity of high pile strength was about 2.4 times higher than that of low pile strength. The dynamic load test result showed that the allowable bearing capacity of high pile strength was about 1.4 times~1.5 times higher than that of low pile strength. The comparison result of allowable bearing capacity between static and dynamic load test showed that the difference of allowable load ranged from 3% to 6% under the same settlement conditions. As a result of comparing the ultimate bearing capacity by load test and design bearing capacity, it was found that the FHWA proposed equation could be more reasonable than the other proposed equation in load sharing ratios of end bearing and skin friction.

Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse

  • Jiang, Jian;Zhang, Qijie;Li, Liulian;Chen, Wei;Ye, Jihong;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.127-154
    • /
    • 2020
  • Disproportionate collapse triggered by local structural failure may cause huge casualties and economic losses, being one of the most critical civil engineering incidents. It is generally recognized that ensuring robustness of a structure, defined as its insensitivity to local failure, is the most acceptable and effective method to arrest disproportionate collapse. To date, the concept of robustness in its definition and quantification is still an issue of controversy. This paper presents a detailed review on about 50 quantitative measures of robustness for building structures, being classified into structural attribute-based and structural performance-based measures (deterministic and probabilistic). The definition of robustness is first described and distinguished from that of collapse resistance, vulnerability and redundancy. The review shows that deterministic measures predominate in quantifying structural robustness by comparing the structural responses of an intact and damaged structure. The attribute-based measures based on structural topology and stiffness are only applicable to elastic state of simple structural forms while the probabilistic measures receive growing interest by accounting for uncertainties in abnormal events, local failure, structural system and failure-induced consequences, which can be used for decision-making tools. There is still a lack of generalized quantifications of robustness, which should be derived based on the definition and design objectives and on the response of a structure to local damage as well as the associated consequences of collapse. Critical issues and recommendations for future design and research on quantification of robustness are provided from the views of column removal scenarios, types of structures, regularity of structural layouts, collapse modes, numerical methods, multiple hazards, degrees of robustness, partial damage of components, acceptable design criteria.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.