• Title/Summary/Keyword: Construction Wastes

Search Result 332, Processing Time 0.02 seconds

An experimental study on the low temperature melting treatment of waste asbestos for using (폐석면의 활용을 위한 저온 용융처리에 대한 실험적 연구)

  • Song, Tae Hyeob;Kim, Young Hun;Park, Ji Sun;Lee, Sea Hyun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • As a reinforced fabric, asbestos has been utilized as a fire-resistant material as it has a superior flexural stiffness and heat resistance up to $1500^{\circ}C$. However, due to its harmfulness, its use has been prohibited recently and the even the installed asbestos materials are being repaired or supplemented if there is a concern about flying. Asbestos is mainly used for construction panels as a reinforced fabric and coating materials to ensure the fire-resistance of steel frames. Asbestos was used as fire-resistant materials for steel frames until 1991 and then prohibited as Act on Industrial Safety and Health limits the concentration of asbestos in the air. Classified as a designated waste according to Act on Waste Control, asbestos must be buried if there is no possibility of flying (panel-type materials) or cement-solidified and then buried if there is a possibility of flying (spray coating material) In general, it is required that a new waste landfill include a certain landfill facility for designated waste, but in reality there is an absolute storage of landfill facilities for designated waste as they only install facilities of the size required by the regulations. This could result in the 2nd environmental pollution as they cannot process asbestos wastes which will be generated in large volume in the future. This study explores a method that melts asbestos wastes at $700^{\circ}C$ rather than cement-solidifying the waste asbestos from construction sites, especially asbestos-containing spray coating. The study results showed that there was no change in the composition and shape even though asbestos wastes was melted at $1300^{\circ}C$, but there was a change for the specimen which was process in advance for low temperature melting and then melt at $900^{\circ}C$.

  • PDF

The method for the classification according to their kinds and the estimation of unit generation rate for promoting recycling of construction and demolition(c&d) debris (건설폐기물 재활용촉진을 위한 종류별 분류 및 발생원단위 산정 방안)

  • Lee, Hi Sun;Kim, Dong Sik
    • Journal of the Society of Disaster Information
    • /
    • v.4 no.1
    • /
    • pp.86-100
    • /
    • 2008
  • It is needed to classify the kinds of construction and demolition(c&d) debris to 6 catagories of waste concrete, waste asphalt concrete, waste wood, scraps, combustible waste and incombustible waste in order to properly do a separate discharge and to estimate unit generation rate in construction site. Also, in this case, the unit treating cost for mixed wastes should be applied with the unit treating cost for combustible waste. The construction standard materials estimation data is used for basic data for estimating unit generation rate. The mixed wastes in this data should be classified to waste wood, combustible waste and incombustible waste, and their ratio is obtained by using the unit generation rate of Asia Pacific Environment and Management Institute and Seoul Metropolitan Development Institute. The waste amounts generated from newly-built construction can be obtained from multiplying the loss rate by the amount of materials used from construction standard estimation data. Also, those from dismantling construction can be obtained by subtracting waste amount generated during newly-built construction from total input amount of materials in newly-built construction. Those in two cases can be used in construction site. It can be used for estimating the amount generated and establishing the treating plan in the case of setting up the policy of waste management and doing the environment impact assessment.

  • PDF

Introduction of sand marble wastes in the composition of mortar

  • Hebhoub, H.;Belachia, M.;Djebien, R.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.491-498
    • /
    • 2014
  • During the past years, the protection of the environment has become a major concern out passing the state frontiers to reach a planetary dimension. Depository waste sites have become a serious problem in terms of their locations and costs. On the other hand, the construction industry has a leading place in terms of quantities of waste produced from the start to the end of each construction site, by the large amounts of raw materials used and their respective consequences on the environment. The recycling of quarry wastes products, of demolished concrete, bricks and large quantities of waste resulting from the transformation of marble blocks can provide ideal solutions and advantages for the preservation of the environment, to become a supplementary source of aggregates. The main purpose of this study is to show technically the possibility of recuperating the aggregates of marble wastes as a partial substitute or total in the mortars. The aggregates used in this study is a sand of marble wastes (excess loads of sand exposed to bad weather conditions) of the quarry derived from Fil-fila marble (Skikda, east of Algeria). To achieve this work, we have studied the effect of sand substitution of marble wastes in the mortar with rates of (25, 50, 75, 100%); comparing the results obtained with reference samples (0%), the properties when the samples are fresh, and the mechanical performances of mortars at solid state (loss and gain of weight, dimensional variations). The introduction of recycled sand in the mortars gives good results and can be used as granulates.

The Research on Environmental-Friendly Manhole Repair and Construction Technology (친 환경적 맨홀 보수 및 시공 기술개발에 대한 연구)

  • Seo, Jeong-Hwan;Yang, Hae-Jeong;Kim, Kwang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.836-841
    • /
    • 2012
  • The repair of road pavement and manhole has been resulted long construction times and traffic jams, environmental pollution from construction wastes, and budget waste due to excessive construction costs. In order to resolve such problems, we have developed the new construction method using C-ring, which can fix and raise the manhole securely. This technology is the method by driving in a wedge after inserting C-ring and expanding it in order to raise manhole to the regular height. This has been approved by the test reports of KOLAS(Korea Laboratory Accreditation Scheme), and was confirmed safety, durability and reliabilty in result. In this paper we approved this technology was able to short working times to around 20% and construction costs to around 50% with compare other construction methods. Also, environmental pollution and civil complaints will be prevented because there will be no longer any noises, vibrations, dust, or construction wastes.

Characterization of Illegally Dumped Wastes in Riversides of Nakdong River (낙동강 중류 고수부지내 매립폐기물 특성 연구)

  • Kim, Youngsug;Choi, Boram;Lee, Wontae;Kang, Sungwon;Ahn, Kwangho;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.21-25
    • /
    • 2011
  • This study was performed to evaluate characteristics of illegally dumped wastes in the riversides of Nakdong river found during dredging of Nakdong river. Precise classification of the wastes found in the riversides is essential to proper treatment of the wastes. We tried to determine whether these wastes contained toxic compounds and stabilized. Wastes were found at 27 sampling points out of 159 segments investigated and these wastes were not classified as toxic wastes. In addition, clay soils were found at 60 sampling points, and these soils were not classified as wastes. Thus, these soils are thought to be recycled as construction materials. Some samples were not stabilized, which means biodegradation was still progressed in these areas.