• Title/Summary/Keyword: Construction Waste

Search Result 1,502, Processing Time 0.057 seconds

The experimental study on the basic test by mortar and the development of concrete material using Powdered Waste Glasses (폐유리 분말을 이용한 모르터 기초실험과 콘크리트 제품 개발을 위한 연구)

  • 서동훈;김광기;박선길;박병근;정병훈;정민영
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.58-63
    • /
    • 2001
  • Recently, it has been often reported that recycling of wasted glasses should be a great topic in related business circles. For the environmental reasons, a public institution are looking fur the ways of recycling these waste glasses. Consequently, the purpose of this research is to recycle crushed and powdered waste glasses by substituting for the cement in mortar and concrete. First of all, the optimum replacement ratio of Powdered Waste Glasses(PWG) can be obtained from the pilot test results. Secondary, we make advances in recycling of waste glasses as recycled to make secondary concrete products. So, we manufactured concrete brick and block contained powdered waste glasses by through mortar pilot test.

  • PDF

Effect of the replacement rates of Waste Glass Fine Aggregate on the Mechanical Properties and Alkali - Silica Reaction of Mortars with different W/C Ratio - (폐유리 잔골재 대체율이 물시멘트비가 다른 모르타르의 역학적 특성 및 알칼리 -실리카 반응에 미치는 영향 -)

  • Eu, Ha-Min;Kim, Gyu-Yong;Nam, Jeong-Soo;Son, Min-Jae;Sasui, Sasui;Lee, Yae-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.195-196
    • /
    • 2020
  • This study evaluated the mechanical properties and alkali silica reaction of mortar according to the mixing ratio of waste glass. As a result, as the mixing ratio of the waste glass increased, the compressive and flexible strength of the mortar decreased due to the slip of aggregate, and the alkali-silica reaction(ASR) increased. So, it is considered that research is needed to prevent slip and ASR of the waste glass aggregate in order to use the waste glass as a fine aggregate for concrete.

  • PDF

Evaluation of Physical Properties of Recycled Cement Powder for Recycling Radioactive Waste Concrete (방사화된 폐콘크리트의 고화재 활용을 위한 재생시멘트 분말의 물성 평가)

  • Choi, Yu-Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.305-306
    • /
    • 2023
  • Recently, as the radioactive waste disposal facility becomes scarce, the importance of efficient disposal of waste from nuclear power plants is increasing. This study was conducted to utilize radioactive waste concrete powder as solidifying agent for radioactive waste treatment. Paste with an age of more than one year was used with a disk mill to have a particle size of 150㎛ or less, and treated at temperatures of 500℃, 600℃ and 700℃ for 2 hours. In order to simulate the radioactive cement powder, aqueous solutions of Di-water, CsCl 1M, SrCl2 1M and CoCl2 1M were used as blending water at W/C 0.7 and to improve fluidity, polycarboxylate type superplasticizer was used at 0.4 wt.% based on the weight of recycled cement paste powder. Characterisation was carried out using vicat method, strength and density.

  • PDF

The Environmental Analyzing Method of Mixed Coal Ash in Ash Pond to Recycle as a Construction Material (건설재료로 재활용하는 회사장 혼합석탄재의 환경적 검토 방법)

  • Koh, Yong-Il
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.75-79
    • /
    • 2012
  • In the recycling of industrial waste unlike household waste, the legislation and the governmental systematic support, etc. were not also established due to an anxiety of hazard or harmfulness, etc. and a preconception. So the legislation and the system should be urgently established for the recycling of industrial waste. In this study, the environmental analyzing method of industrial waste-mixed coal ash in ash pond to recycle as a construction material is suggested by considering and analyzing test process and results about environmental impact factors of mixed coal ash. It is certified that there are not environmental problems in the recycling of mixed coal ash in ash pond as a construction material, according as its classification is general waste and each corresponding item of the leaching test result are satisfied with the 'environmental safety criteria' suggested in this study. And to build database, it is necessary to survey the environmental impact on surrounding areas with time after its recycling as a construction material.

A Development of Automatic Quantification System for Construction and Demolition Waste (건설폐기물의 물량 자동화 산정 시스템 개발)

  • Kim, Chang-Hak;Kim, Hyo-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.743-746
    • /
    • 2007
  • Now, in a domestic country, the rebuilding and redevelopment of existing houses has been rapidly increasing with an economic growth and the improvement of living condition. The percentage of C&D waste among generating waste in domestic is more and more increasing. Accordingly, Our government or company are doing much effort to decrease the C&D waste. But now, we can not find any results about system development for estimating and managing rightly the C&D waste quantity. Now, much social cost are increasing for reason of the institutional inertia for forecasting quantity of C&D waste. Therefore, This study suggest some methods be able to estimate it of apartment easily. The methods are composed with utilization of a basic unit, a CAD drawing and a 3D object. Each module can be also used individually according to the purpose of a user.

  • PDF

Fabrication of Movable Separator for Site to Discharge Medium and Large-Scale Mixed Construction Waste from Agricultural Areas and Its Efficiency Evaluation (농촌지역 혼합건설폐기물의 중·소규모 배출현장용 이동식 분리선별기 제작 및 선별 효율 성능평가)

  • Kim, Byung-Yun;Park, Ji-Sun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In this study, a real-sized experimental equipment (pilot plant) was built at the site based on the preliminary research data to develop a movable separator for the mixed construction waste that can be implemented in agricultural areas to review its feasibility through the evaluation of its separation efficiency by waste types. The final construction of the movable separator and experimental results of the separation efficiency are summarized as follows. 1) The separation performance according to the blade type was the best for the combustible wastes either with 26 numbers of L-type blades and 32 numbers of pin type blades. As far as combination of blade types, when the L-type and pin-type were combined, the best separation efficiency was achieved. 2) The separation efficiency for waste wood by the conveyor type and angle of inclination (slope) of the trommel was the best when the conveyor had ribs of seagull shape with the angle of inclination 45°. 3) The separation efficiencies by process showed that 65.9% was separated as inorganic demolition wastes, 18.2% as waste woods, and 16.0% as combustible wastes at conveyor speed of 2-3 rpm, and the error rate was the least from the waste types generated in the dismantle site.

Improvement Strategy for Demolition Industry through a Analysis of Domestic Demolition Technique and Situation (국내해체기술 및 현황분석을 통한 해체산업의 발전방향)

  • Kim, Chang-Hak;Kim, Hyo-Jin;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.143-151
    • /
    • 2010
  • Currently, one of the most interested things at home and abroad country will be an eco-friendly construction. Among these, one of the most important elements will be the recycle and reuse of construction and demolition waste. Because construction waste is generated the most at the demolition phase, it is important to minimize the quantity of the demolition waste at the phase. And it is also important to develop a system to manage rightly the generated demolition waste. But in the domestic country, a research for this has hardly been carried out. In recent, the government has realized its importance and is making a research to improve demolition technique and is preparing a research to make a raw for deconstruction. Therefore, this study examined its application situation and importance by analyzing the trend of demolition technique used in the domestic industry. Also this study carried out a survey for situation analysis of the demolition industry. This study suggested items needed for the development of demolition technique, demolition design and reduction of C&D waste through a survey results and a situation analysis.

Economic Feasibility Assessment for the Interior Materials Selective Dismantling System Promotion in Buildings (건축물 분별해체 제도 활성화를 위한 경제적 효용성 평가)

  • Ji-Sun Park;Kyung-Pil Jang;Tae-Hyeob Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • In this study, as a foundational research aimed at promoting the efficient recycling and environmentally friendly disposal of construction waste through the activation of a selective dismantling system, our primary objective was to analyze the economic feasibility of implementing selective dismantling. To achieve this, we conducted an assessment on a 5-story residential building with a construction area of 2,400 m2 as a case study. When considering the additional cost of dismantling construction ① the reduction in waste disposal costs due to decreased mixed waste, ② and the potential revenue from recycling through the separation and sorting of waste materials, and ③ we were able to comprehensively confirm that there is an expected cost-saving effect totaling 34,727,000 KRW when compared to conventional demolition methods.

Properties of Low Carbon Type Hydraulic Cement Binder Using Waste Recycle Powder (무기계 재생원료를 사용한 저탄소형 수경성 시멘트 결합재의 특성)

  • Song, Hun;Shin, Hyeon-Uk;Tae, Sung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • Cement is a basic material for the construction industry and it requires high temperature sintering when manufacturing cement. $CO_2$ emissions from raw materials and fuels are recognized as new environmental problems and efforts are underway to reduce them. Techniques for reducing $CO_2$ in concrete are also recommended to use blended cement such as blast furnace slag or fly ash. In addition, the construction waste generated in the dismantling of concrete structures is recognized as another environmental problem. Thus, various methods are being implemented to increase the recycling rate. The purpose of this study is to utilize the inorganic raw materials generated during the dismantling of the structure as a raw material for the low carbon type cement binder. Such as, waste concrete powder, waste cement block, waste clay brick and waste textile as raw materials for low carbon type cement binder. From the research results, low carbon type cement binder was manufactured from the raw material composition of waste concrete powder, waste cement block, waste clay brick and waste textile.