• Title/Summary/Keyword: Construction Material

Search Result 5,011, Processing Time 0.026 seconds

A Study on a Performance evaluation for Quality Liguid Siliceous of Waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • Kang, Hyo-Jin;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs, to improve durability of structure. This study separately examined physical and chemical specific of quality liguid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent (액상형 규산질계 침투성 방수재의 성능평가에 관한 연구)

  • 강효진;권시원;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

A Case Study for Construction Method of drilled Shafts installed in Very Soft Soil (초연약지반에 시공된 현장타설말뚝의 시공방안 사례연구)

  • 최용규;이민희;백동진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.103-117
    • /
    • 2002
  • During the installation of drilled shafts in very soft ground, to keep the pile shape and to central concrete quality, casing method (wrinkled pipe and embedded steel pipe) and non-casing method have been used. In the construction cost, non-casing method was the most economical. When the wrinkled pipe and the embedded steel pipe casing method are used, an increase of 133% and 123% in the construction cost could be seen. When concrete for drilled shaft was placed under groundwater, underwater unseparation concrete would be used to restrain the concretes's material separation and to control the concrete quality. On the condition of required unseparable and (lowing property was assured, use of less amount of mixed material and flowing material must be recommended.

  • PDF

Construction stage analysis of fatih sultan mehmet suspension bridge

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.489-505
    • /
    • 2012
  • In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

A Study of sea Dike meterials loss due to Scouring and Consolidation Settlement During the Periond of Construction on Construction on the West Cost of Korea (서해암 방조제 공사 기간중 유실토량 측정시험)

  • 안재숙
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.1
    • /
    • pp.2503-2519
    • /
    • 1972
  • The studies were carried out to find the cause and the quantitative evaluation of sea dike materials loss which is occured during the period of construction works for the tideland reclamation projects on the west coast of Korea. Major subjects to studies were to establish the typical relationships between the tidal flow and the movement of dike materials, the tidal-flow and the erosion, the dike materials and the ratio of material movement(losses), construction methods and the ratio of materials movement (losses). Based on the above subjects, the studies were made for the purpose of obtain the following informations; (1) Collecting and evaluaing the data of dike material losses due to foundation settlement, from designed existing dikes on the west coast. (2) By the field investigation at A-San Sea Dike, Pyong Taek Project, the Comparison would be made by the relationships between the tide velocity and the movement of dike foundation under the natural conditions and the period of construction so that find out the relationship between the dike materials of foundation situation and settlements. With regard to the dike construction works, it is so difficult to calculate the exact quantity of material losses due to the foundation settlements. The major factors that affect the settlement losses of the dike materials are: (1) Topographical variation (2) Swepting the sectional area of dike by the tide velocity. (3) Dumping riprap to the outerside of dike during the period of construction works. (4) Sectional area losses by the cause of occurence of the new tide channels. (5) material losses by the heavy storms. (6) Consolidation settlement by the foundation weakness. (7) Material losses by the earth materials by tide flow. Most hi호 material losses were occured by the Consolidation settlement due to the foundation weakness, the maximum tide velocities due to decrease the cross sectional area of the gaps and erosion of foundation due to the range of tide, Inner and outerside of dike, or dike material loses due to the tide flow. Final conclusion would be obtained by the continuous measurement of consolidation settlement at the stage of final clusure of the dike. (It is scheduled to close on the end of 1972) However, intermediate conclusion can be introduced as follows: (1) The estimation of material(losses) during the period of construction works for the existing sea-dikes up to date were only empirical. The material losses at the general closure for design was estimated at 10% of the riprap, 20% of the earth materials, and 20% of the riprap, 40% of the earth materials at the final closure of the dike. The final closure estimated double quantity to the general closure, but it is still doubt. (2) The ratio of consolidation settlements was found smaller than the calculated quantity. It can be foreseen that settlement speeds is higher thom the calculated speeds. (3) The movement of dike foundation under the natural conditions were not so depends on the geological conditions of the foundation. (4) When the tide velocities was estimated 100 at the normal tide, it was estimated 125 at the high tide and 55 at the low tide. The tide velocities at the low tide shows apparently lower than the high tide and the higher velocities at the deep water depth.

  • PDF

Combining Machine Learning Techniques with Terrestrial Laser Scanning for Automatic Building Material Recognition

  • Yuan, Liang;Guo, Jingjing;Wang, Qian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.361-370
    • /
    • 2020
  • Automatic building material recognition has been a popular research interest over the past decade because it is useful for construction management and facility management. Currently, the extensively used methods for automatic material recognition are mainly based on 2D images. A terrestrial laser scanner (TLS) with a built-in camera can generate a set of coloured laser scan data that contains not only the visual features of building materials but also other attributes such as material reflectance and surface roughness. With more characteristics provided, laser scan data have the potential to improve the accuracy of building material recognition. Therefore, this research aims to develop a TLS-based building material recognition method by combining machine learning techniques. The developed method uses material reflectance, HSV colour values, and surface roughness as the features for material recognition. A database containing the laser scan data of common building materials was created and used for model training and validation with machine learning techniques. Different machine learning algorithms were compared, and the best algorithm showed an average recognition accuracy of 96.5%, which demonstrated the feasibility of the developed method.

  • PDF

The Study on the Engineering Characteristics by Self-Hardening of Coal Ash (석탄회의 자경성에 따른 공학적 특성연구)

  • Sang, Jung-Hyuk;Shin, Woong-Gi;Kim, Ji-Won;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.81-87
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

  • PDF

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

The material management process model of material characteristic for material administration of physical distribution (자재물류관리를 위한 자재 속성별 자재관리 프로세스 모델 - ETO 범주 자재를 중심으로 -)

  • Ha, Young-Seo;Yu, Jung-Ho;Kim, Chang-Duk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.16-25
    • /
    • 2009
  • In construction industry, the cost related to material is different from each other under the characteristic of projects. However, it has 40% of the whole cost in the composition of prime cost. Recently, While the construction work become bigger, specialized and complex, it is complex to carry in materials because of shortage of space. However, in many cases, material management has been underestimated as well as the material management is depending on experience of site managers so it has been studied about frequently. In this study, I suggest four classification methods of material characteristic ETO, ATO, MTO, MTS. I also analyze what the most efficient supply management of the site materials is through researching the characteristics of the material distribution. In conclusion, I would like to build the material management classification for the characteristics of materials.

Constructing Database for Estimating Life Cycle CO2 emissions from Blast Furnace Slag (고로슬래그미분말의 전과정 CO2 배출원단위 평가 및 데이터베이스 구축)

  • Park, Jung-Hoon;Tae, Sung-Ho;Kim, Tae-Hyoung;Lee, Kang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.49-51
    • /
    • 2012
  • This study was conducted as a part of database construction for development of CO2 assessment system for concrete to assess CO2 emissions and analyze characteristics of blast furnace slag manufactured in Korea through life cycle assessment method. For this, life cycle CO2 emissions assessment technique for construction materials was examined. The entire manufacturing process for blast furnace slag was analyzed on blast furnace slag manufacturer in Korea for application of assessment technique. Life cycle CO2 assessment was performed on blast furnace slag after classifying assessment process into raw material production step, raw material transportation step and construction material manufacture step.

  • PDF